A Lie group analogue of the coset poset of abelian subgroups

Bilkent Topology Semiliar, Nov 30 2020

Goal: Provide an analogue at
$$|\mathcal{E}(A,b,G)|$$
 and
Okay's result for a compact Lie group G.
~ Adam, F. Cohen and Tomes-Griese studies a filtration
at the clossichying opene BG for Lie groups or
dispute groups -- $CB(q_1G) \subset ... \subset B(2_1G) \subset BG$
 $c.g. \quad B(2_1G) := |k \mapsto Hom(Zk_1G) \subset Gk[$
~ G. Lissule $B(2_1G) = \bigcup BA$
AeAb
ather booping $\mathcal{D}(B(2_1G)) = \mathcal{D}(B(2_1G)) \times G$ (G con)
 $E(2_1G)$ is the homotopy fiber $E(2_1G) \to EG$
 $\int_{\mathbb{D}}^{J} \int_{\mathbb{D}}^{J} \int_{\mathbb{D}}^{J} B(2_1G) - \mathcal{D}(BG)$
thus a simplicial model for $E(2_1G)$ can be given as
follows
For each n_1 bet
 $E(2_1G) = \frac{1}{2} (g_{01} \dots g_{0n}) \in G^{n}; \leq g_{0}^{-1} g_{11} \dots g_{0n}^{-1} g_{0n}) \in Ab$

Elzih) is a good analogie for (E(Ab, G)) when a is a Lie grap.

Thus: (Antolia-commun, Gritschacher, V) let a compact
Lie group, then
a is a torus
$$2 = 7 \operatorname{T}_i(E|z_ia|) = 0$$

for $i = 4/2$ and $2|$.
+ Moreour a is abelian $2 = 7 \operatorname{E}(z_ia)$ is contractible
 $E = 1/2$ and $2|$.
+ Moreour a is abelian $2 = 7 \operatorname{E}(z_ia)$ is contractible
 $E = 1/2$ and $2|$.
+ Moreour is $E(z_ia)_1 := 1$ as from $(\mathbb{Z}^k, a)_1$.
Thus: $(\operatorname{Adm} - \operatorname{Lober 2})$: a comp Lie grp.
a is abelian $2 = 7 \operatorname{E}(z_ia)_1$ is variously acyclic
Prediction: $H^k(\operatorname{E}(z_ia)_1; a) = H^k(A/T \times A/T)^w = 0$
 $= 7 \operatorname{A/T}$ is rationally acyclic $\leq 7 \operatorname{G} = T$

The commutator map
$$E: E(2, a) \rightarrow BEG, as$$

Lemm: Let gihik eG s.t. $\langle g^{-1}h, h^{-1}h^{2} \rangle EAb$, The
 $[g_{1}h_{3}^{2}Eh, k] = [g_{1}k_{3}^{2}$
Med: For every W, En: $En[2, a] \rightarrow EG, a_{3}^{2} = B_{n}EG, a_{3}$
 $(g_{0}, ..., g_{n}) \mapsto (Eg_{0}, g_{1}^{2}, ..., Eg_{n+1}, g_{n}^{2})$
which induces a simplicidal map $E_{0}: E_{0}(2, a) \rightarrow B_{0}EG, a_{3}^{2}$
 $(compact$
Prop: Let $A \vee Lde$ group or a Lisenle group
 $O = E$ well-bonotopic $\Rightarrow G = is$ holes topy abelieus
 $(1.e., c: Gxa \rightarrow a (may) \mapsto cx_{n}g_{3} is mult)$
 $O = E_{0}: T_{1}E(2, a) \rightarrow T_{0}EG, a_{3} is surjecture
Noot ibm: O There is a connectative Lingurun
 $E(2, a) \stackrel{G}{\rightarrow} BEG, a_{3}^{2}$ (in there growthere
 $\int_{a} f_{a} f_{a} f_{a} f_{a} f_{a} f_{a} f_{a}$
 $E(a, a) \stackrel{G}{\rightarrow} EG, a_{3} is null
 $E(a, c) \stackrel{G}{\rightarrow} EG, a_{3} is null
 $E(a, c) \stackrel{G}{\rightarrow} EG, a_{3} is null$$$$

a discrete Ex: TI, Elzias -> Earas (2) 2 x314 ! X311 = 1 , X314 · X414 = X314 i4 Lg'h, WhYEAS } $(\chi (\chi_{gin}) = \Sigma gih)$ Concompact E(2, G^s) -> BEG^s, G^s] Γ Γ $E(2, \alpha) \longrightarrow BE(4, \alpha)$ son on path-an => (* is suffering as well, D Kinks The are htpy abelian compact Lie graps hast and not abelian, e.g. a= 5'x Qg central prod compact Homotopy abelien Lie groups can be classifice as follous : (n is htpy adelian 2=) h is a central extension of To(a) by a torus. Prop! let a comp Lie grap. It Ty Elzich) = 0 then he is a torus.

Proof iden : It settings to show EQ.G.S. is abrivan It it it is not can find SU(2) ~> EQ.G.S. inducing iso in TI3(-).

The map
$$E: E(z, SU(z)) \rightarrow BSU(z)$$

has a honotopy section S after looping E
 $TI_3 PE(z, SU(z)) \rightarrow TI_3 SU(z)$
 L L L L $This TI_4 |E(z, 4)|$
 $TI_3 PE(z, 6) \rightarrow TI_3 [G(G]].$ and E erro.
 D
Prop: Let G compact Lie group, and suppose Go
is a forus. Then if $E(z, 6)$ is 2-connected,
 E is null-homotopic.

skitch prot :
$$Elz_{16}$$
) 1-oun => $E4_{16}C_{00}$, this
a torus. Then $E \in H^2(Elz_{16}); \pi_1(E_{16}) = 0$
=> E is well.

Sheld prot main that: Suppose
$$T_i(E(2,16)) = 0$$
 i=1,2,4
 $T_i(E(2,16)) = 0 = 0$ Go a torus
 $T_2(E(2,16)) = 0 = 0$ G is htpy abelian
 $2=0$ G autual extension $T_0(4)$
by a torus
 $T_1(E(2,16)) = 0 = 0$ E4.16) C Go = T
Connected

E: Elz, O(2)) -> BSO(2) also splits after looping.

Question: It a compact Lix group, does SLC: SLE(2,4) -> E4143 has a section? (up to htps:)