QUANTUM CODES
The Hilbert space

$$
V=\mathbb{C} \mathbb{T}_{2}^{n}=\left(\mathbb{C} \mathbb{Z}_{2}\right)^{\otimes n}
$$

is usually referred to as the Hilbert space of n-quits.
We will study quantum codes fer quoit. A quantum code is a subspace

$$
C \subset V \text {. }
$$

We will unite Mc jor the projector whose image is given by C.
More explicitels, if $\left\{\left|u_{a}\right\rangle\right\}$ is an orthonernel bans for C then

$$
\Pi_{c}=\sum_{a}\left|v_{a}\right\rangle\left\langle u_{a}\right| .
$$

Quantum codes are used in the theory of errer-cernution.
In this section we will leern about a special clan of codes know os stabilizer codes.

Ex: 1) Three quoit bit tip cade is the subspace

$$
C \subset \mathbb{C} \mathbb{Z}_{2}^{3}
$$

spanned by the vector $\{|000\rangle, 1111\rangle$. The projecter is given by

$$
\Pi_{c}=|000\rangle\langle 000|+|111\rangle\langle 111
$$

2) Three quit phase flip code:

$$
C^{\prime} \subset \mathbb{C} \mathbb{Z}_{2}^{3}
$$

spanned by $\{1+++\rangle,|-->\rangle$ where

$$
1+\rangle=H|0\rangle \text { and }|-\rangle=H|-\rangle
$$

The anociated projector

$$
\left.T_{c^{\prime}}=1+++\right\rangle\langle+++1+1--><---1
$$

Note that

$$
C^{\prime}=\{H \otimes H \otimes H \quad \vee: \quad \vee \in C\}
$$

and

$$
T_{C^{\prime}}=H \otimes H \otimes H \quad T_{C} H \otimes H \otimes H .
$$

Hadarves: $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

$$
H|0\rangle=1+7 \text { and } H|1\rangle=1-\rangle
$$

3) Nine quwit shor code:

Let us deqile the lineer operaton

$$
\begin{aligned}
A: \mathbb{C} \mathbb{T}_{2} & \longrightarrow \mathbb{C} \mathbb{T}_{2}^{3} \\
A|0\rangle & =|000\rangle \\
A|1\rangle & =|111\rangle \quad A|+\rangle=\frac{|000\rangle+|111\rangle}{\sqrt{2}} \\
A^{\prime}: \mathbb{C} \mathbb{Z}_{2} & \rightarrow \mathbb{C} \mathbb{T}_{2}^{2} \\
A^{\prime}|0\rangle & =1+++\rangle \\
A^{\prime}|1\rangle & =1---\rangle .
\end{aligned}
$$

Let

$$
\begin{aligned}
|v\rangle & =(A \otimes A \otimes A) A^{\prime}|0\rangle \\
& =A \otimes A \otimes A 1+++\rangle \\
& =\frac{(1000\rangle+|111\rangle) \otimes(|000\rangle+|111\rangle) \otimes(100\rangle+|11\rangle)}{2 \sqrt{2}} \\
|w\rangle & =(A \otimes A \otimes A) A^{\prime}|1\rangle \\
& =A \otimes A \otimes A|---\rangle \\
& =\frac{(|000\rangle-|111\rangle) \otimes(|00\rangle-|111\rangle) \otimes(|000\rangle-|111\rangle)}{2 \sqrt{2}}
\end{aligned}
$$

Shor ude:

$$
\begin{aligned}
& C=\operatorname{span}\{|v\rangle,|w\rangle\} \\
& \Pi_{c}=|v\rangle\langle v|+|w\rangle\langle w| .
\end{aligned}
$$

Quantum error-correction Let $A \in \operatorname{Herm}(V)$.

Consider the spectral decomposition

$$
A=\sum_{a} \lambda_{a}|v a\rangle\left\langle V_{a}\right|
$$

The suppert of $A \in$ Herm (V) D the subspue

$$
\operatorname{supp}(A)=\operatorname{Spa}\left\{|y a\rangle: \lambda_{a} \neq 0\right\}
$$

In quentin infornotion theory an errer is represented by a completely positive $\operatorname{mep} \Phi_{E}: V \longrightarrow V$.

We say that a channel $\Phi_{R} \in C(V)$ corrects Φ_{E} on the code space C it

$$
e=\frac{\Phi_{k} \circ \Phi_{E}(e)}{\operatorname{Tr}\left(\Phi_{k} \circ \Phi_{E}(e)\right)}
$$

for all $e \in \operatorname{Den}(V)$ with $\operatorname{supp}(e) \subset C$.
Note that $\operatorname{Tr}\left(\Phi_{R} \circ \Phi_{E}(e)\right)$ D independent of e :
i)

$$
\begin{aligned}
\operatorname{din} C & =1 \\
e & =|u\rangle\langle u\rangle
\end{aligned}
$$

whee $T_{c}=|n\rangle\langle n|$. The
$\operatorname{Den}(C)=\{|u\rangle\langle u|\}$ and the claim holds.
ii) $\operatorname{dim} C \geqslant 2$

$$
e=\lambda\left|u_{a}\right\rangle\left\langle u_{a}\right|+(1-\lambda)\left|u_{b}\right\rangle\left\langle u_{b}\right|
$$

whee $0 \leq \lambda \leq 1$, $a \neq b \in \sum$ and

$$
\Pi_{c}=\sum_{a \in \Sigma}\left|u_{a}\right\rangle\left(u_{a} \mid\right.
$$

Let $\Phi=\Phi_{R} \circ \Phi_{E}$. Then

$$
\operatorname{Tr}(\Phi(e)) e=\Phi(e)
$$

Writing $\quad \alpha_{a b}=\operatorname{Tr}(\Phi(e))$

$$
\begin{aligned}
& \alpha_{a}=\operatorname{Tr}\left(\Phi\left(\left|u_{0}\right\rangle\left(u_{a} \mid\right)\right)\right. \\
& \alpha_{b}=\operatorname{Tr}\left(\Phi\left(\left|u_{0}\right\rangle\left\langle u_{0}\right\rangle\right)\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
& \alpha_{a b}\left(\lambda\left|u_{a}\right\rangle\left\langle u_{a}\right|+(1-\lambda)\left|u_{b}\right\rangle\left\langle u_{b}\right|\right) \\
& =\lambda \underbrace{\Phi\left(\mid u_{a}\right)\left(u_{a} \mid\right)}_{\alpha_{a}\left|u_{a}\right\rangle\left(u_{c} \mid\right.}+(1-\lambda) \underbrace{\Phi\left(\left|u_{0}\right\rangle\left\langle u_{0}\right|\right)}_{\alpha_{b}\left|u_{0}\right\rangle\left\langle u_{0}\right|}
\end{aligned}
$$

For $0<\lambda<1$ we have $\alpha_{a b}=\alpha_{a}=\alpha_{b}$.

Quantum errer - correction conditions
Assume Φ_{E} hes the Kraus represestotile

$$
\Phi_{E}(A)=\sum_{a \in \Sigma} A_{a} A A_{a}^{+}
$$

There exists Φ_{R} correcting Φ_{E} an C if and only if

$$
\Pi_{c} A_{a}^{+} A_{b} \Pi_{c}=B(a, b) \Pi_{c}
$$

for some $B \in H \operatorname{Her}(\mathbb{I}$).
Proof: (\Rightarrow) : Assume thee exist Φ_{k} with Kraws representation

$$
\mathbb{Q}_{R}(A)=\sum_{6} B_{b} A B_{b}^{+}
$$

Define $\Phi_{E}^{c}(A)=\Phi_{E}\left(\Pi_{C} A \Pi_{C}\right)$. Then

$$
\begin{aligned}
\Phi_{R} \cdot \Phi_{E}^{C}(e) & =\Phi_{R} \cdot \Phi_{E}(\underbrace{\Pi_{C} e \Pi_{c}}_{\text {has supper }}) \\
& =\alpha \Pi_{C} e \Pi_{C} \quad \text { contanid inc }
\end{aligned}
$$

for some $\alpha \in \mathbb{R} \geqslant 0$.
This implies

$$
\sum_{a, b} \underbrace{B_{b} A_{a} \Pi_{c}}_{D_{a b}} e \underbrace{\Pi_{c} A_{a}^{+} B_{b}^{+}}_{D_{a b}^{+}}=\underbrace{\sqrt{\alpha} \Pi_{c}}_{E} e \underbrace{\sqrt{\alpha} \Pi_{c}}_{E}
$$

Then by the unitary equivalence of Krauns
representation, thee exist $u \in U(\mathbb{C} \Sigma)$ such that

$$
\underbrace{B_{b} A_{a} \Pi_{c}}_{D_{a b}}=\underbrace{U(a, b) \sqrt{\alpha}}_{\text {coll this } A(a, b)} \Pi_{c}
$$

Then

$$
\left(B_{6} A_{a} \Pi_{C}\right)^{+}=\overline{A(a, b)} \Pi_{C}
$$

and

$$
\underbrace{\sum_{b} \overline{A(a, b)} A(c, b) \text { this) } B(a, c)}_{\Pi_{c} A_{a}^{+}(\underbrace{\left.\sum_{b} b_{b}^{+} B_{b}\right) A_{c} \Pi_{c}} \prod_{c} A_{a}^{+} B_{b}^{+} B_{b} A_{c} \Pi_{c}} \prod_{c}
$$

B is thermition:

$$
\begin{aligned}
B(a, c) & =\sum_{b} \overline{A(a, b)} A(c, b) \\
& =\overline{\sum_{b} \overline{A(c, b)} A(a, b)} \\
& =\overline{B(c, a)} .
\end{aligned}
$$

(\Leftarrow) : By spectral decomporition:

$$
B=U D U^{+}
$$

where $U \in U(\mathbb{C} E$ and D diagonal.
Define

$$
\vec{A}_{b}=\sum_{a} U^{\top}(b, a) A_{a}, \quad\binom{U^{\top} D a b o}{\text { unitary }}
$$

We have $\Phi_{E}(A)=\sum_{6} \widetilde{A}_{b} A \vec{A}_{b}$. Exam. Vert.

We have

$$
\begin{aligned}
\Pi_{c} \widetilde{A}_{a}^{+} \widetilde{A}_{b} \Pi_{c} & =\sum_{c, d} \underbrace{\overline{u(d, a})}_{u^{+}(a, d)} u(c, b) \underbrace{\Pi_{d} A_{c}^{+} A_{C}}_{B(d, c) \Pi_{c}} \\
& =\sum_{c, d} u^{U^{+}(a, d) B(d, c) U(c, b) \Pi_{C}} \\
& =D(a, b) \Pi_{c} .
\end{aligned}
$$

By polar deconrarition: $\quad\left(A=U \sqrt{A^{+} A}\right)$

$$
\begin{aligned}
\widetilde{A}_{a} \Pi_{c} & =U_{a} \sqrt{\Pi_{c} \widetilde{A}_{a}^{t} \vec{A}_{a} \Pi_{c}} \\
& =\sqrt{D(a, a)} u_{a} \Pi_{c}
\end{aligned}
$$

where $U_{a} \in U(\mathbb{C} \Sigma)$.
Define

$$
\begin{aligned}
\Pi_{a} & =U_{a} \Pi_{c} u_{a}^{+} \\
& = \begin{cases}\frac{1}{\sqrt{D(a, a)}} \widetilde{A}_{a} \Pi_{c} u_{a}^{+} & D(a, a) \neq 0 \\
D & \end{cases} \\
& D(a, a)=0
\end{aligned}
$$

Note that for $a \neq b$:

$$
\begin{aligned}
& \Pi_{a} \Pi_{b}=\Pi_{a}^{+} \Pi_{b} \\
& =\frac{1}{\sqrt{D(a, a)}} \frac{1}{\sqrt{D(b, b)}} u_{a} \underbrace{\Pi_{c} \widetilde{A}_{a} \widetilde{A}_{b} \Pi_{c}}_{\underbrace{D(a, b)}_{c} \Pi_{c}} u_{b}^{+} \\
& =0 .
\end{aligned}
$$

We define

$$
\Phi_{R}(e)=\sum_{a} u_{a}^{+} \Pi_{a} p \Pi_{a} u_{a}
$$

Then for e whore rupert contained in C :

$$
\begin{aligned}
& \Phi_{R} \circ \Phi_{E}(e) \\
& =\sum_{a, b} u_{b}^{+} \Pi_{b} \cdot \vec{A}_{a} e \vec{A}_{a}^{+} \Pi_{b} U_{b} \\
& \Pi_{c} e \Pi_{c} \\
& \Pi_{b}^{+}= \begin{cases}D & D(6,6)=0 \\
\frac{1}{\sqrt{D(b, b)}} u_{b} \Pi_{c} \vec{A}_{b}^{+} & D(6,6) \neq 0 .\end{cases} \\
& \text { - } D(6,6) \neq 0 \text { then } \\
& u_{b}^{+} \Pi_{b}^{+} \vec{A}_{a} \Pi_{c} \sqrt{e}=u_{b}^{+}(\frac{1}{\sqrt{D(b, b)}} u_{b} \underbrace{\Pi_{c}}_{\underbrace{\prod_{c} \vec{A}_{b}}_{\delta_{a, b} D(b, b)}) \tilde{A}_{a} \Pi_{c}} \sqrt{e} \\
& =\frac{\delta_{a, b} D(b, b)}{\sqrt{D(6, b)}} \Pi_{c} \sqrt{e} \\
& =\delta_{a, b} \sqrt{D(b, b)} \sqrt{e} . \\
& \text { - } D(0, b)=0 \text { then } u_{b}^{+} \Pi_{b}^{+} \vec{A}_{a} \Pi_{c} \sqrt{e}=0 \\
& =\sum_{a, b} \delta_{a, b} D(b, b) e=\underbrace{\sum_{b} D(b, b)}_{\alpha \neq 0} e
\end{aligned}
$$

Ex: 1) Three quit bit flip: Let $\Sigma=\{0,1,2,3\}$.
i) Error:

$$
\Phi_{E}(e)=\frac{1}{4} \sum_{a \in \Sigma} A_{a} e A_{a}
$$

when

$$
\begin{aligned}
A_{0}=\mathbb{1}, \quad & A_{1}=X \otimes \mathbb{U} \otimes \mathbb{1} \\
A_{2}=\mathbb{U} \otimes X \otimes \mathbb{H}, & A_{3}=\mathbb{1} \otimes \mathbb{1} \otimes X .
\end{aligned}
$$

We hove

$$
\Pi_{c} \underbrace{A_{a}^{+} A_{b}}_{\substack{\text { at most } \\ \text { bit } \text { lips }^{2}}} \Pi_{c}= \begin{cases}0 & a \neq b \\ T_{c} & a=b\end{cases}
$$

here $B=11$, a Hermitian motix.
ii) Recovery:

$$
\Phi_{R}(e)=\sum_{a} u_{a}^{+} \Pi_{a} e \Pi_{a} u_{a}
$$

where

1) Un is obtcuned from the paler decomprition eq

$$
\underbrace{\stackrel{A}{A}_{c}}_{A_{a}} \prod_{c}=U_{a} \sqrt{\Pi_{c} A_{a}^{+} A_{a} \Pi_{c}}
$$

i.e., $\quad A_{a} \Pi_{c}=U_{a} \Pi_{c} \Rightarrow$
2) Π_{a} is dygined by $\Pi_{c} A_{a}^{+}=\Pi_{c} u_{a}^{+}$

$$
\begin{aligned}
\Pi_{a} & =\underbrace{u_{a} \Pi_{c} \Pi_{c}{A_{c}^{+}}_{a}^{+}}_{A_{a} \Pi_{c}} \overbrace{c} u_{0}^{+} \\
& =A_{a} \Pi_{c} A_{a}^{+} .
\end{aligned}
$$

For e suen that $\sup (e) \subset C$ we hove

$$
\begin{gathered}
\Phi_{k} \circ \Phi_{E}(e)=\frac{1}{4} \sum_{a, b} u_{b}^{+} \underbrace{\Pi_{b} A_{a} \underbrace{e}_{c} A_{a}^{+} \underbrace{\Pi_{b} U_{b} \Pi_{c} A_{b}^{+}}_{c}}_{A_{b} \Pi_{c} A_{b}^{+}} \begin{array}{c}
=\frac{1}{4} \sum_{a, b} \underbrace{u_{b}^{+} u_{b} \Pi_{c}}_{\|} \delta_{a, b} \Pi_{c} e^{\Pi_{c}} \delta_{a b} \Pi_{c} \underbrace{u_{b}^{+} U_{b}}_{\mathbb{1}} \\
=\frac{1}{4} \sum_{a} \underbrace{\Pi_{c} e \Pi_{c}}_{e}=e .
\end{array}
\end{gathered}
$$

2) Thnce qubit phou flip:
i) Error:

$$
\Phi_{E}(e)=\frac{1}{4} \sum_{a \in \Sigma} A_{a} e_{a}
$$

where $\quad A_{0}=\mathbb{1}, \quad A_{1}=Z \otimes \mathbb{1} \otimes \mathbb{1}$

$$
\begin{aligned}
& A_{2}=\mathbb{1} \otimes \mathcal{Z} \otimes \mathbb{\mathbb { }}, \quad A_{3}=\mathbb{H} \otimes \mathbb{H} \otimes Z . \\
& (B=\mathbb{L} \text { os beqse) }
\end{aligned}
$$

ii) Recovery:

$$
\Phi_{R}(e)=\sum_{a} U_{a}^{+} \Pi_{a} e \Pi_{a} U_{a}
$$

We have

$$
\bar{\Phi}_{R} \cdot \bar{\Phi}_{E}(e)=e
$$

Exeruse: Vergn ths. Simile to previons care.

Divitization of erron
Assume $\bar{\Phi}_{E}(A)=\sum_{a \in \Sigma} A_{a} A A_{a}^{+}$satisjies the errer-correction conditions.

The channel Φ_{R} cerrecting Φ_{E} on C conntructed M the previous preof akso correets

$$
\Phi_{E}^{\prime}(A)=\sum_{a} A_{a}^{\prime} A\left(A_{a}^{\prime}\right)^{+}
$$

where $A_{a}^{\prime}=\sum_{b} M(a, b) A_{b}$ for some

$$
M \in L(\mathbb{C} \Sigma)
$$

Preet: Errer-correction conditions:

$$
\Pi_{C} A_{a}^{+} A_{b} \Pi_{C}=B(a, b) \Pi_{C}
$$

whes for some $B \in \operatorname{Her}(\mathbb{C} \Sigma)$.
A) befere we dicpraliue B :

$$
B=u D u^{t}
$$

and dyyine

$$
\vec{A}_{b}=\sum_{a} U^{\top}(b, a) A_{a}
$$

Note that $A_{a}=\sum_{b} \overline{U(a, b)} \vec{A}_{b}$.
Then the ever-correction condition becorve

$$
\Pi_{C} \tilde{A}_{a}^{+} \tilde{A}_{b} \Pi_{c}=D(a, b) \Pi_{c}
$$

Krams representation of $\bar{\Phi}_{K}$ is giver by $\quad \Phi_{k}(A)=\sum_{a} u_{a}^{+} \Pi_{a} A \Pi_{a} u_{a}$ and

$$
u_{a}^{+} \Pi_{a} \widetilde{A}_{b} \sqrt{e}=\delta_{a b} \sqrt{D(a, a)} \sqrt{e}
$$

Then

$$
\begin{aligned}
& u_{a}^{+} \Pi_{a} A_{b}^{\prime} \sqrt{e}=\sum_{c} M(b, c) u_{a}^{+} \Pi_{a} \underbrace{A_{c}}_{c} \sqrt{e} \\
& \sum_{d} \overline{u(c, d)} \widetilde{A}_{d} \\
&=\sum_{d} \underbrace{(M \bar{u})}_{k}(b, d) \underbrace{u_{a}^{+} \Pi_{a} \widetilde{A}_{d} \sqrt{e}}_{\delta_{a, d} \sqrt{D(a, a)} \sqrt{e}} \\
&=k(b, a) \sqrt{D(a, a)} \sqrt{e} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\Phi_{R} \cdot \Phi_{E}^{\prime}(e) & =\underbrace{\sum_{a, b} U_{a}^{+} \Pi_{a} A_{b}^{\prime} e\left(A_{b}^{\prime}\right)^{+} \Pi_{a} U_{a}}_{\alpha} \\
& =\underbrace{\sum_{a, b} k(b, a) \overline{k(b, a)} D(a, a)}_{a, b} e
\end{aligned}
$$

Giver Φ_{E} with Grams operates $\left\{A_{a}\right\}_{a \in \Sigma}$
This result says tho if Φ_{R} correus an err represented by $\left\{\begin{array}{l}A_{a} S_{a t \Sigma} \text { on } C\end{array}\right.$ then

$$
\left\{A_{a}^{\prime}\right\}_{a \in \Sigma}
$$

1) correctable on C where

$$
A_{a}^{\prime}=\sum_{b} M(a, b) A_{b} .
$$

An ever represented by $\Phi_{E} D$ called a single qulait error if

$$
\Phi_{E}^{(k)}=\mathbb{\|}_{L\left(\mathbb{C} \mathbb{T}_{2}^{k-1}\right)} \otimes \Phi_{E} \otimes \mathbb{\Perp}_{L\left(\mathbb{C} \mathbb{Z}_{2}^{n-k}\right)}
$$

for some single qubit erne represented b) Φ_{E}.
$\overline{\Phi_{E}} \in T\left(\mathbb{C} \boldsymbol{U}_{2}\right.$, $\left.\mathbb{C} t_{h}\right)$ complisely zoitie
Cor: Let $\Phi_{E}^{(k)}$ be a single quit essen Then there exist Φ_{R} correcting Φ_{E} an C it

$$
\Pi_{c} \sigma_{a}^{(k)} \sigma_{b}^{(k)} \Pi_{c}=B(a, b) \Pi_{c}
$$

far some $B \in L(\mathbb{C} \Sigma)$ where

$$
\Sigma=\{0,1,2,3\}_{-}
$$

Prot: Apply the precion remalt to Φ_{E} vitu $A_{a}=G_{a}$.
We have $\left\{\sigma_{a}\right\}_{a} i>$ correctable an C iff they smisjy the erner-cametion carditions.
Then $\Phi_{E}^{(h)}$ witm $\left\{A_{a}^{\prime} \in L(\mathbb{C} U)\right\}$ will be corretable sin $\left.\left\{G_{a}\right\}_{c}\right\rangle$ a bans of $L(\mathbb{C} T /)$.

Ex: 9 quait sher code cen correct arbitrany single qubit erners:

$$
\begin{aligned}
& \prod_{C} G a_{(1)}^{6} \sigma_{b}^{(1)} \prod_{C}= \\
& =|v\rangle\langle v| \mathrm{Cla}_{a}^{(1)} \sigma_{b}^{(1)}|v\rangle\langle v| \\
& +|v\rangle\langle v| \cos ^{(1)} 0^{(1)} \quad|w\rangle\langle v| \\
& +|\omega\rangle\langle\omega| \text { faco }^{(1)} \text { (1) }|v\rangle\langle v| \\
& +|w\rangle\langle w| G_{a}^{(1)} G_{0}^{(1)}|w\rangle\langle\omega| \\
& =\frac{1}{2}\left(|v\rangle(\langle 00|+\langle 111|) \sigma_{a}^{(1)} \sigma_{b}^{(1)}(|000\rangle+|111\rangle)\langle V|\right. \\
& +|w\rangle(\langle 001-\langle 111|) \underbrace{\left.\left.\sigma_{a}^{(1)} \sigma_{b}^{(1)}(\mid 000)-|111\rangle\right)\langle v|\right)} \\
& \langle k| G_{a}^{(1)} G_{0}^{(1)}|k\rangle=\left[\begin{array}{ll}
1 & a=b \\
0 & \text { othem }
\end{array}\right. \\
& =\delta_{a, b} \prod_{c}
\end{aligned}
$$

Stabilizer theory
Stabiliu thear is a subtheary ef quantum theery.
ut conuls af a restrited set of

1) States
2) Tramprnohions
3) Meorvervent.

It can be med to contrut gpertum codes kown us stabiliur codes.

Pauli group
Single quoit Pauli operates:

$$
\begin{aligned}
T_{a, b} & =i^{a b} x^{a} z^{b} \\
& =\left\{\begin{array}{cl}
\mathbb{1} & (a, b)=(0,0) \\
z & (a, b)=(0,1) \\
x & (a, b)=(1,0) \\
y & (a, b)=(1,1)
\end{array}\right.
\end{aligned}
$$

The n-qubit Pauli operator:

$$
\begin{aligned}
T_{a, b} & =T_{a, b,} \otimes \cdots \otimes T_{a n, b_{n}} \\
& =i^{a_{1} b_{1}} x^{a_{1}} z^{b_{1}} \otimes \cdots \otimes i^{a_{n} b_{n}} x^{a_{n}} z^{b_{n}} \\
& =i^{a_{1} b_{1}+\cdots+a_{n} b_{n}} x^{a_{n}} z^{a_{n}} \otimes \cdots \otimes x^{a_{n}} z^{b_{n}} \\
& =i^{a \cdot b} x^{a_{n}} z^{b_{1}} \otimes \cdots \otimes x^{a_{n}} z^{b_{n}}
\end{aligned}
$$

where $(a, b) \in \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{n}$.

Lem: We have

$$
T_{a, b} T_{e f}=i^{\gamma(a b, e f)} T_{a+e, b+f}
$$

where $\gamma(a b, e f)=b \cdot e-a \cdot f$ mod 4 .

Prot: For $n=1$, recall the formula:

$$
T_{a, b} T_{e, f}=i^{b e}-a f \quad T_{a+e, b+f} \quad(\text { Lem })
$$

where $a, b, e, f \in T C_{2}$.
Then for arbitrary n we have

$$
\begin{gathered}
T_{a_{1} b} T_{e, f} \\
=i^{b, e_{1}-a \cdot f_{1}} T_{a_{1}+e_{1}, b_{1}+f_{1} \otimes \ldots \otimes} i^{b_{n} e_{n}-a f_{n}} T_{a_{n}+e_{n}, b_{n}+f_{n}}
\end{gathered}
$$

on the other hand,

$$
\begin{aligned}
& T a+c, e+f=i^{(a+0) \cdot(e+f)} x^{\left(a_{1}+b_{1}\right)} z^{\left(e_{1}+f_{1}\right)} \\
& \otimes \ldots x^{\left(a_{n+0}\right)} z^{\left(e_{n}+f_{n}\right)} \\
& =i^{(a+b) \cdot(e+f)} i^{-\left(a_{1}+b_{1}\right)\left(e_{1}+f_{1}\right)} T_{a_{n}+0,}, e_{1}+f_{1} \\
& \otimes \ldots \otimes i_{a_{n}+c_{n}}, e_{n}+f_{n} \\
& =T_{\left.a_{n}+b_{1}, e_{1}+f_{1}+b_{n}\right)\left(e_{1}+f_{n}\right)} \otimes \cdots \otimes T_{a_{n}+b_{1}, e_{1}+f_{n}}
\end{aligned}
$$

Then uning this rue obtain

$$
\begin{aligned}
& T_{a, b} T_{e, f}=i^{b e-a f} T_{a_{1}+6,}, e_{1}+f_{1} \otimes \\
& \ldots \otimes T_{a_{n}+b_{1},} e_{1}+f_{n}
\end{aligned}
$$

Lem: We have

$$
T_{a, b} T_{e, f}=(-1)^{w(a b, e f)} T_{e, f} T_{a, b}
$$

where $w\left(a b, e_{f}\right)=b e+a f \bmod 2$.
Prot: For $n=1$, we proved this identity. For $n \geqslant 1$, we have

$$
\begin{aligned}
& T_{a, b} T e, f \\
& =T_{a_{1}, b_{1}} T_{e_{1}, f_{1} \otimes \ldots \otimes} T_{a_{n}, b_{n}} T_{e_{n}, f_{n}} \\
& =(-1)^{b_{1} e_{1}+a_{1} f_{1}} T_{e_{1}, f_{1}} T_{a_{1}, b_{1}} \\
& \otimes \ldots \otimes(-1)^{b_{n} e_{n}-a_{n} f_{n}} T_{a n, b_{n}} T_{e_{n}, f_{n}} \\
& =(-1)^{b \cdot e+a \cdot f} T a+e, b+f \text {. }
\end{aligned}
$$

Pali operates constitute a greps.
The n-quit P audi group is defined by

$$
P_{n}=\left\{i^{\alpha} T_{a, b}: \begin{array}{r}
(a, b) \\
\gamma \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{n} \\
\gamma
\end{array} \quad\{0,1,2,3\}\right] .
$$

Reel tot a grep is a set G with a junction : $G \times G \longrightarrow G$ such that
i) $g \cdot h \in G, \forall g \cdot h \in G$.
ii) There exist an identity element $I \in G$:

$$
g \cdot 1=1 \cdot g=9 \quad \forall g \in G .
$$

iii) For every $g \in G$ there expb an inverse $g^{-1} \in G$

$$
g \cdot g^{-1}=g^{-1} \cdot g=1 .
$$

Note that

$$
\text { i) } \begin{aligned}
& i^{\alpha} T_{a, b} \cdot i^{\beta} T_{e, f} \\
& =i^{\alpha+\beta+\gamma(a b, e f)} T_{a+e, b+f} \in P_{n}
\end{aligned}
$$

ii) Identity element: $T_{0,0}=\mathbb{L}$.
iii) Inverse of $i^{\alpha} T_{a, b}$ is $i^{-\alpha} T_{-a,-b}$.

Observe thot $\pi_{2}{ }^{n} \times \pi_{2}{ }^{n}$ is on abelion group under addition:

$$
a+b=\left(a_{1}+b_{1}, \cdots, a_{n}+b_{n}\right)
$$

A gremp D abelion if

$$
g \cdot h=h \cdot g \quad \neq g, h \in G
$$

$\pi_{2}^{n} \times \pi_{2}^{n}$ is abelion, but P_{n} is rot.
Pro: The furtion $\pi: P_{n} \longrightarrow \pi_{2}^{n} \times \pi_{2}^{n}$ defined by

$$
\pi\left(i^{\alpha} T a, b\right)=(a, b)
$$

is a surgertive group homomerphism whose kernel is the subgroup

$$
\left\{i^{\alpha} \mathbb{\Perp}: \alpha=0,1,2,3\right\} .
$$

A group homenerphorm is a jumbion

$$
f: G \longrightarrow H
$$

such thot

$$
f\left(g \cdot g^{\prime}\right)=f(g) \cdot f\left(g^{\prime}\right) \quad \forall g, g^{\prime} \in G .
$$

A bijentice goup homoruephorm is colled on sonerphsis. In this care ve urite $G \triangleq H$.

The kernel of f is the subgreup

$$
\operatorname{ker}(f)=\{g \in G: \quad f(g)=1\} C G .
$$

Let $N C G$ be a subgrep.
N is a nerval subgroup if

$$
g N g^{-1}=N \quad \forall g \in G .
$$

In thas cone one con deysine a grotient grenp GIN whore elemerb are cozeb

$$
g N=\{g n: n \in N\rangle
$$

The multipliotion is given by

$$
g N \cdot g^{\prime} N=g g^{\prime} N
$$

The identity elemert is $\perp N$.
The invise of $g \sim D g^{-1} N$.
There 1 a susertie grerp homonephism

$$
G \longrightarrow G / N .
$$

Converely giken a anjecte grap homomephirm $f: G \longrightarrow H$ we hove

$$
G / \operatorname{ker}(f) \cong H .
$$

Prot: We have

$$
\begin{aligned}
\Pi\left(i^{\alpha} T_{a, b} \cdot i^{p} T_{e, f}\right) & =\pi\left(i^{\alpha+p+\gamma(a b, e f)} T_{a+e, b+f}\right) \\
& =(a+e, b+f) \\
& =(a, b)+(e, f) \\
& =\pi\left(i^{\alpha} T_{a, b}\right) \pi\left(i p T_{e, f}\right) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
T\left(i^{\alpha} T a, b\right) & =(a, b) \\
& =(0,0)
\end{aligned}
$$

hence the kernel is given bo

$$
\{i \alpha \underbrace{T_{0,0}}_{\mathbb{\Perp}}: \alpha=0,1,2,0\} .
$$

For $g{ }^{G} P_{n}$ we thunk of $\pi(g)$ as a row of size $2 n$ with entries in \mathbb{Z}_{2}.

Let

$$
\left.\Lambda=\left(\begin{array}{ll}
\mathbb{0} & \mathbb{1} \\
\mathbb{1} & \mathbb{1}
\end{array}\right)\right\} 2 n .
$$

comurter
Then $g \cdot g^{\prime}=g^{\prime} g$ if and only if

$$
\pi(g) \curvearrowright \pi\left(g^{\prime}\right)^{\top}=0 \quad \bmod 2
$$

For a subset of elements

$$
\left\{g, \cdots, g_{e}\right\} C G
$$

We write gereotes

$$
\left\langle g_{1, \cdots,} g_{e}\right\rangle
$$

fer the subgrap gereroted by there elements.

Elements of $\langle 9, \ldots, 9 e\rangle$ conusb of arbitices product af 91, 9.je.

The set $\{91, \cdots$ ge $\quad \mathrm{D}$ said to be independent if

$$
\left\langle g_{1}, \cdots, g_{i-1}, g_{i+1}, \cdots, g_{e}\right\rangle \neq\left\langle\partial_{1}, \cdot \cdot, g_{e}\right\rangle
$$

fer all $1 \leqslant i \leqslant l$.
Given $\partial_{1}, \cdots, g_{e} \in P_{n}$ we define the check matrix

$$
M\left(g_{1}, \cdots, g_{e}\right)=\left(\begin{array}{ccc:ccc}
a_{11} & \cdots & a_{1 e} & b_{11} & \cdots & b_{1 e} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{l 1} & \cdots & a_{l l} & b_{l 1} & \cdots & b_{l l}
\end{array}\right)
$$

where $\left(a_{i}, b_{i}\right)=\pi(i)$.

Lem: Let $S=\left\langle 91, \cdots, g_{e}\right\rangle$ be such that $-\mathbb{1} \& S$. Then $\left\{g 1, \cdots, g_{e}\right\}$ is independent if and only it the rows of the check rotrix M(g,s, $M e)$ are liheorly indeper dent.

Pref: The condition $-\underline{1} \notin S$ implies that

$$
\begin{aligned}
g_{i}^{2} & =\left(i^{\alpha i} \bar{I}_{a_{i}}, b_{i}\right)^{2} \\
& =i^{2 \alpha i} \underline{1} \\
& \neq-\underline{1},
\end{aligned}
$$

i.e., $i^{\alpha_{i}}= \pm 1$ and $g_{i}^{2}=11$.

Assume that the rows of the check motrix are linearly dependent, i.e, there exists $a, \ldots, a_{e} \in \mathbb{Z}_{2}$, not all sen, such that

$$
\sum_{i=1}^{e} a_{i} M_{i}=0 \quad \operatorname{nod} 2
$$

whee $M_{i}=\pi\left(\rho_{i}\right)$.
We have

$$
\pi\left(\prod_{i=1}^{l} g_{i} a_{i}\right)=\sum_{p_{r o}}^{l} a_{i} \pi\left(g_{i}\right)=0
$$

hence $\prod_{i=1}^{l} g_{i}^{a_{i}}=i^{\alpha} \mathbb{I}$ for sore α.
Sine $-\mathbb{1} \notin S$ we hove $\alpha=0$.
Y $a_{j} \neq 0$ then

$$
g_{j}=\prod_{i \neq j} g_{i}^{a_{i}}
$$

Therepre

$$
\left\langle g_{1}, \ldots, g_{l}\right\rangle \neq\left\langle g_{1}, \ldots, g_{j-1}, g_{j+1}, \ldots, g_{l}\right\rangle
$$

i.e., $\left\{g_{1}, . ., g_{e}\right\rangle$ is dependent.

Converse is similes. (Exercise)

Lem: Let $\delta=\left\langle g_{1}, \ldots, g e\right\rangle$ such that $-\mathbb{\|} \notin S$ and $\{\rho, \ldots, \rho e\rangle$ is independent. For $i \in\{1, \ldots, l\}$, there exists $g \in P_{n}$ such that

$$
\begin{aligned}
& g_{i} g^{+}=-g_{i} \\
& g_{j} g^{+}=g_{j} \quad \forall j \neq i
\end{aligned}
$$

Prot: The rows of the check motrix $M=M\left(g_{1}, . ., g_{e}\right)$ is lineerly independent.

Thus there exists x such that

$$
M 入 \underbrace{\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{2 n}
\end{array}\right)}_{x}=\underbrace{\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
\vdots \\
0
\end{array}\right)}_{e_{i}}] \text { sine } l
$$

tet $g \in P n$ be such that

$$
\pi(g)=\left(\begin{array}{lll}
x_{1} & \cdots & x_{2 n}
\end{array}\right)
$$

Then for $j \neq i$ we have

$$
\underbrace{\pi\left(g_{j}\right)^{\top}}_{M_{j}} \wedge \underbrace{n(g)}_{x}=0
$$

and

$$
\underbrace{\pi\left(g_{i}\right)^{\top}}_{M_{i}} \wedge \underbrace{\pi(g)}_{x}=1
$$

Given a subgremp $S \subset P n$ the vector space stabilised by S is defined to be

$$
V_{S}=\{V \in V: \quad g V=V, \forall g \in S\}
$$

S is called the stabiliur of V .

Ex: Let
$S=\langle\mathcal{Z} \otimes Z \otimes \mathbb{\perp}, \| \nexists \otimes z\rangle$ bit flip code
Then

$$
\left.Y_{s}=\operatorname{span}\{|00\rangle,\| \|\rangle\right\}
$$

Pro: 4 Vs $\neq 0$ then S is abelie and $-\underline{H} \notin S$.
Pret: We will show that failure of any of the two conditions implies $V_{S}=0$.
Fist assure S is not abelicn, ie, there exisb $\sigma, h \in S$ sech tho

$$
g \cdot h=-h g
$$

Then for an $v \in \forall s$:

$$
\begin{aligned}
v & =g \cdot h v \\
& =-h \cdot g v \\
& =-v \quad V \quad V=0 .
\end{aligned}
$$

Next anu $-\mathbb{1} \in S$.
Then $-\mathbb{1} V=V \quad \Rightarrow \quad V=0$.

Theorem: Let $S=\left\langle g, \cdots, g_{n-k}\right\rangle$ where $\left\{g, \ldots, g_{n-k}\right\}$ is Mdependert. A soume S is abelion and - $11 \notin S$.
Then $\operatorname{dim}\left(V_{s}\right)=2^{k}$.
Preot: For $g \in P n$ with $g^{2}=11$
we have

$$
g=\Gamma_{+1}-\Gamma_{-1}
$$

where

$$
\begin{aligned}
& \Pi_{+1}=\frac{11+9}{2} \\
& T_{-1}=\frac{11-9}{2}
\end{aligned}
$$

Note thot

$$
\begin{aligned}
9 T+1 w & =\frac{9+9^{2}}{2} w \\
& =\frac{9+1}{2} w \\
& =\Pi_{+1} w,
\end{aligned}
$$

i.e., M_{+1} projertion ento +1 -eigenspece.

Similerh

$$
g M_{-1} w=-M_{-1} w,
$$

i.e., T_{-1} projeution anto -1 - eigenspale.

For $x=\left(x_{1}, \ldots, x_{n-k}\right)$ define the progenter

$$
\Pi_{x}=\frac{11+(-1)^{x_{1}} g_{1}}{2} \cdots \frac{11+(-1)^{x_{n-k}} \rho_{n-k}}{2}
$$

For $i \in\{1, . ., n-k\}$ there exist k; such that

$$
\begin{aligned}
& k_{i} g_{i} k_{i}^{+}=-g_{i} \\
& k_{i} g_{j} k_{i}^{+}=g_{j} \quad \forall j \neq i . \text { (Lem) }
\end{aligned}
$$

Let $k_{x}=k_{1}^{x_{1}} \ldots k_{n-k}^{x_{n-k}}$.
Then

$$
\Pi_{x}=k_{x} \prod_{0} k_{x}^{+}
$$

Therepre rash $\Pi_{x}=\operatorname{sonh} \Pi_{0}=\operatorname{dim} V_{s}$
Observe that

1) Π_{0} is the progecter onto V / s.
2) $\Pi_{x} \Pi_{x}=\delta_{x, x^{\prime}} \Pi_{x}$
$\sum_{x}^{3)} \prod_{x}=\sum_{x_{1}} \Pi_{x_{1}}, \overbrace{\sum_{x_{2}} \Pi_{x_{2}} \ldots \sum_{x_{n}}^{\| v} \Pi_{x_{n}}}^{\|_{v}}$

$$
=\mathbb{I I} V
$$

Thus $\operatorname{dim} V_{s}=2^{n} / 2^{n-k}=2^{k}$.

A sulgrous of the jorm

$$
S=\left\langle 9_{1}, \cdots, g_{n-k}\right\rangle
$$

i) called a stabiliue subgreep if

1) S is abelion.
2) $-\mathbb{1} \notin S$
3) $\left\{g_{1, \prime}, g_{n-k}\right\}$ ihdeperdert.

By the theorem

$$
Y_{S} C X
$$

is a subspou of dimention 2^{k}.
A pue state $|V\rangle D$ celled a pure stabieler state if there exisb a stabiliu gres

$$
\left.S=\left\langle g_{1}\right\rangle^{\prime}, g_{n}\right\rangle
$$

suen trot

$$
\nabla_{S}=\operatorname{Spar}_{\text {per }}\{|v\rangle\}
$$

Clifford group
The normoliue of P_{n} in $U(V)$ is defined by

$$
\begin{aligned}
& N\left(p_{n}\right)=\left\{u \in u(v): u g u^{+} \in p_{n}\right. \\
&\left.\forall g \in p_{n}\right\}
\end{aligned}
$$

Note that $P_{n} \subset N\left(P_{n}\right)$ and in particular $\left\{e^{i \sigma} \mathbb{I}: \theta \in \mathbb{R}\right\} \subset N\left(P_{n}\right)$. The n-qubit clifford grep is defined to be

$$
C l_{n}=N\left(P_{n}\right) /\left\{e^{i v} \mathbb{1}\right\}
$$

A subgroup $\vdash \subset G$ called normal if $g^{h} g^{-1} \in H \quad \forall g \in G, h \in H$. Given a reamed subgrep $H C G$ we on defile a quotile group

$$
G / H=\{g \mapsto: \quad g \in G\}
$$

$$
g H=\{g h: h \in H\}
$$

The group operation is given bo

$$
g H \cdot g^{\prime} H=9 \rho^{\prime} H
$$

Lem: $C l_{1}$ is gerented by

$$
\begin{aligned}
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \text { Hadarved } \\
& S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad \text { phore gate. }
\end{aligned}
$$

Proot: Let $u \in N\left(P_{1}\right)$. Then

$$
\begin{aligned}
\left(U T_{a, b} U^{+}\right)^{2} & =U T_{a, b}^{2} U^{+} \\
& =11 .
\end{aligned}
$$

un particuler,

$$
\begin{aligned}
U \underbrace{\mathbb{1}}_{T_{a, b}} U^{+}=\mathbb{1}, \quad U T_{a, b} U^{+}=T_{c, d} \\
(a, b) \text { and }(c, d) \text { nes } 2 e n .
\end{aligned}
$$

Let E3 derote the permiation gaop permaning the set

$$
\{(1,0),(1,1),(0,1)\} .
$$

Then given u there exisb $G_{u} \in \sum_{3}$ such thot

$$
U_{a, b} u^{+}=T_{c_{1} d}
$$

where $(c, d)=G_{u}(a, b)$.

Moneover, any permutotibn cen be realined by a unitary:
and

$$
\left.G_{S}: \begin{array}{l}
(1,0) \\
(1,1) \\
(0,1)
\end{array} \longmapsto \begin{array}{l}
(1,1) \\
(1,0) \\
(0,1)
\end{array}\right\} \begin{aligned}
& s \times s=y \\
& s y s=-x \\
& s z s=z
\end{aligned}
$$

Nole thot $\Sigma_{3}=\left\langle G_{H}, G_{s}\right\rangle$. (Exercire).
This shous thot there is a sugectice group homomephism

$$
\phi: C l_{1} \longrightarrow \Sigma_{3}
$$

The kernel of ϕ :
Fion conlide u such thot

Writing $u=e^{-i / 2 \alpha \cdot \sigma}(\operatorname{det} u=1)$

$$
u G_{i} U^{+}=R_{2}(|\alpha|) e_{i} \cdot \sigma
$$

Under notations there is alvens at leest one $i \in\{1,2\}$,$\} for which$

$$
U G_{i} U^{+}=G_{i}
$$

Becaur otherm, if $U G_{i} U^{+}=-6_{i} \quad \forall i$ the det $R=(-1)^{3}=-1$, not a notation.

Then

1) $U G, U^{+}=\sigma_{1}$, i.e., $R_{2}(|\alpha|) e_{1}=e_{1}$: $\hat{\alpha}=e_{1}$ and $|\alpha|=\Pi$ or 2π.
Thus $U=\Perp$ or X.
2) $u \sigma_{2} u^{+}=\sigma_{2} \Rightarrow u=\mathbb{H}$ or \rangle.

ב) $u \sigma_{3} u^{+}=\sigma_{1} \Rightarrow u=11$ or Z.

Therefere ker $\phi \cong P_{1} /\langle i \mathbb{1}\rangle$.
Finally obsere thot

$$
z=s^{2} \text { and } x=H S^{2} H .
$$

This mean thot $C e_{1}=\langle H, S\rangle /\langle i \mathbb{L}\rangle$ 自
For a single qubit mitoy M we will write

$$
u^{(k)}=\mathbb{1} \mathbb{C} \mathbb{H}_{2}^{k-1} \otimes u \otimes \mathbb{1} \mathbb{C} \pi_{2}^{n-k}
$$

Ex: The 2-quait mitar

$$
C x^{\text {cortol }\left|a b^{2}\right\rangle}=|a\rangle x^{a}|b\rangle
$$

belongs to $N\left(P_{2}\right)$ and heru $C l_{2}$:

$$
\begin{aligned}
& c x\left(x^{(1)}\right) c x^{+}=x \otimes x \\
& c x\left(x^{(1)}\right) c x^{+}=x^{(2)} \\
& c x\left(z^{(1)}\right) c x^{+}=z^{(1)} \\
& c x\left(z^{(1)}\right) c x^{+}=z \otimes z .
\end{aligned}
$$

Theorem: The n-qubit Clifford group is gereoted by

$$
H^{(k)}, S^{(k)}, C x^{(k l)} \text {. }
$$

k th quoit is control
eth quilt is target
Proof: Let $u \in N\left(P_{n}\right)$.
We hare

$$
u T_{a, b} U^{+}= \pm T_{c, d} .
$$

For $G \in \Sigma_{n}$ we define unitary operate

$$
u_{G}\left|a_{1} \cdots a_{n}\right\rangle=\left|a_{G(1)} \cdots a_{G(n)}\right\rangle
$$

Moreover,

$$
\begin{aligned}
U_{6} T_{a, b} U_{6}^{+} & =U_{6} T_{a, b,} \otimes \cdots \otimes T_{a, b} U_{6}^{+} \\
& =T_{e_{1}, f_{1}} \otimes \cdots \otimes T_{e_{n}, f_{n}}
\end{aligned}
$$

where $\left(e_{i}, f_{i}\right)=\left(a_{o(i)}, b_{o(i}\right)$.
Thus $u_{6} \in C_{n}$.
We can wite

$$
u z^{(1)} u^{+}=G_{i} \otimes g_{z}
$$

for some $g_{z} \in P_{n-1}$.
Note trot $u z^{(1)} u^{+} \neq \pm \mathbb{L}$.

Comporig U with a unites V in $\left\langle H^{(1)}, S^{(1)}, u_{G}: \sigma \in \sum_{n}\right\rangle$ we con arrays

$$
V u z^{(1)} u^{+} v^{+}=X \otimes g_{z}
$$

for some $g_{z} \in P_{n-1}$.
We can arnome U satisfies this property:

$$
u z^{(1)} u^{+}=x \otimes g_{z}
$$

On the other hand, $u x^{(1)} u^{+}$anticormutes with $U z^{(1)} u^{+}$thus

$$
u x^{(1)} u^{+}=g_{j} \otimes g_{x}
$$

where $j=2,3$ and $~_{x} \in P_{n-1}$. Replacing u with $s^{(1)} u$ if needed we cen arrange

$$
\begin{aligned}
& u z^{(1)} u^{t}=x \otimes g_{t} \\
& u x^{(1)} u^{t}=z \otimes g_{x}
\end{aligned}
$$

We con wite

$$
U=\sum_{a, b}|a\rangle\langle b| \otimes U_{a b} .
$$

where $U_{a b}=(-1)^{a b} g_{z}^{a} g_{x}^{b} U_{00}$. (Exeruze)

$$
\begin{aligned}
& u x^{(1)} u^{+}=\sum_{a, b, c, d}|a\rangle\langle b| \times|d\rangle\langle c| \otimes u_{a b} u_{c d}^{+} \\
& =\sum_{a, b, c}|a\rangle\langle c| \otimes u_{a b} u_{c(b+1)}^{+} \\
& =\sum_{a, c}|a\rangle\langle c| \otimes \underbrace{\sum_{b} U_{a b} U_{c(b+1)}^{+}+b_{b+1}}_{a b}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{a}(-1)^{a}|a\rangle\langle a| \otimes g_{x} \\
& =z \otimes g_{x}
\end{aligned}
$$

where we used $g_{x} g_{z}=g_{z} g_{x}$
and $U_{00}^{+} U_{00}=\frac{1}{2} \mathbb{1} \cdot \leftarrow($ exerme $)$
Simibh we can show

$$
u z^{(1)} u^{+}=x \otimes g_{z}
$$

We will show that anted

$$
\begin{aligned}
& u=C g_{z} H^{(1)} \operatorname{Cg}_{x}\left(\mathbb{1} \otimes \sqrt{2} u_{00}\right) \text { : } \\
& \operatorname{Cg}_{z} H^{(1)} C_{g_{x}}\left(\mathbb{1} \otimes \sqrt{2} U_{00}\right)\left(|0\rangle\left|v_{0}\right\rangle+|1\rangle\left|v_{1}\right\rangle\right) \\
& =\sqrt{2} C_{g_{t}} H^{(1)} C_{g_{x}}\left(|0\rangle U_{00}\left|v_{0}\right\rangle+|1\rangle u_{00}\left|v_{1}\right\rangle\right) \\
& =\sqrt{2} C g_{z}(\underbrace{H|0\rangle}_{1+\rangle=\frac{|0\rangle+11)}{\sqrt{2}}} U_{00}\left|v_{0}\right\rangle+\underbrace{+1|1\rangle}_{1-\rangle=|0\rangle-11\rangle} g_{x} u_{00}\left|v_{1}\right\rangle) \\
& \left.=|0\rangle u_{00}\left|v_{0}\right\rangle+11\right\rangle g_{z} u_{00}\left\langle v_{0}\right\rangle \\
& +|0\rangle g_{x} U_{00}\left|v_{1}\right\rangle-11 g_{z} g_{x} U_{00}\left|v_{1}\right\rangle \\
& =\sum_{a, b}|a\rangle\langle b| \otimes U_{a b}\left(|0\rangle\left|v_{0}\right\rangle+|1\rangle\left|v_{1}\right\rangle\right) \\
& =u\left(|0\rangle\left|v_{0}\right\rangle+|1\rangle\left|v_{1}\right\rangle\right) .
\end{aligned}
$$

For $u \in N\left(P_{n}\right)$ degne a $2 n \times 2 n$ matrix Nu:

$$
N_{u}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{2 n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Where

$$
U T_{\underbrace{}_{(a, b)}} M^{+}= \pm T_{(e, f)}^{y}
$$

We have

$$
N^{\top} \wedge N=\Lambda .\left\{\begin{array}{l}
\text { comnutstien } \\
\text { reloties presered }
\end{array}\right.
$$

Let $S_{p_{2 n}}\left(\mathbb{T}_{2}\right)$ derote the group of $2 n \times 2 n$ rotrices M over \mathbb{Z}_{2} satisfying

$$
M^{\top} \wedge M=N
$$

Ther serding U to ${ }^{\text {Th }}$ U defines a group homenepluan

$$
\mathrm{Cl}_{n} \longrightarrow S_{p_{2 n}}\left(\mathbb{t}_{2}\right)
$$

Using the Theoren ares furthe show thot this horamepurm is ako suyertive.

Stabilize measurements
Real that jer a single queit

$$
T_{a, b}=T_{a, b}^{0}-T_{a, b}^{1}
$$

where

$$
\Pi_{a, b}^{c}=\frac{\frac{\Perp}{}+(-1)^{c} T_{a, b}}{2} .
$$

For n-quleib we hove

$$
\begin{aligned}
& T_{a, b}=T_{a_{1}, b_{1}} \infty \ldots \infty T_{a n, b_{n}} \\
& =\left(\Pi_{a, b,}^{0}-M_{a, b,}^{\prime}\right) \otimes \cdot \otimes\left(\Pi_{a, b n}^{0}-\Pi_{a n b n}^{\prime}\right) \\
& =\sum_{c \in \mathbb{T}_{2}^{n}}(-1)^{\sum_{i} c_{i}} \prod_{a_{i} b_{1}}^{c_{1}} \otimes \cdots \otimes \prod_{c_{n} b_{n}}^{c_{n}} \\
& =T_{a, b}^{0}-T_{a, b}^{1} \quad \text { where } \\
& \Pi_{a, b}^{e}=\sum_{c: \sum_{i} c_{i}=e} \prod_{a_{1} b_{1}}^{c_{1}} \otimes \cdots \otimes \prod_{a_{n} b_{n}}^{c_{n}} .
\end{aligned}
$$

A stabilizer measurement i a projectile measurement of the form

$$
T_{a, b}: T_{2} \longrightarrow \operatorname{Proj}(V)
$$

where $T_{a, b}(c)=\prod_{a, b}^{c}$.

Jargen: Ta,b is mearured meass thot Ma,b D meosures.

We have anly talked about destructive mearnemerb.

A rendestructive meosurement anocicted to $M: \Sigma \longrightarrow L(V)$ satistying

$$
\sum_{a \in I} M_{a}^{+} M_{a}=\mathbb{I} V
$$

is a chomel ef the form

$$
\Phi(e)=\sum_{a \in \mathcal{L}}|a\rangle\langle a| \otimes \underbrace{M_{a} e M_{a}^{+}}_{\text {port-mearnemet }}
$$

Let $|v\rangle$ be a stabiliur state state sperigied by $S=\left\langle g, \cdots, g_{n}\right\rangle$. Given a stabiliur meorrerent

$$
T_{a, b}: T_{2} \rightarrow \operatorname{Proj}(V)
$$

Our goal is to descibe the state

$$
\left|v_{a, b}^{c}\right\rangle=\frac{\prod_{a, b}^{c} \quad|v\rangle\langle v| \prod_{a, b}^{c}}{p^{c}}
$$

and the probability $p^{c}=\operatorname{Tr}\left(\Pi_{a, 6}^{c}|v\rangle\langle y|\right)$.

Pro: There cone two ceres:

1) $4 \quad 99_{i}=9 ; 9 \quad \forall \quad i=1, \cdots, n$ then
$(-1)^{e} g \in S$ jer sone $e \in \Pi_{2}$ and

$$
\left|v^{e}\right\rangle=|v\rangle
$$

and

$$
p^{c}= \begin{cases}1 & c=e \\ 0 & c \neq e\end{cases}
$$

2) 4 g $g_{1}=-9, g_{i}$ and
$g_{g_{i}}=g_{i} 9 \quad \forall i=2, \ldots, n$ then
$\left|V^{c}\right\rangle$ is stabilized by

$$
\begin{cases}\left\langle g, g_{2}, . . g_{n}\right\rangle & c=0 \\ \left\langle-g_{2}, g_{2}, . ., g_{n}\right\rangle & c=1 .\end{cases}
$$

and $p^{c}=1 / 2$ for $c=0,1$.
4 g anticommtes mere than two element g_{i} and g_{j} where $i<j$ we cen replace 9_{j} with $9_{i} 9_{j}$, on element which commutes with g. Then the unique anticonmuting element cen be placed os the first gereroter.

Proof: 1) Nose that

$$
\begin{aligned}
g_{i} g|v\rangle & =g g_{i}|x\rangle \\
& =g|v\rangle \quad \forall i=1, \ldots, n .
\end{aligned}
$$

Thus $g|v\rangle \in V_{s}$ and

$$
g|v\rangle=\alpha|v\rangle, \alpha \in \mathbb{C}
$$

Since $g^{2}=11$ wee hove

$$
\begin{aligned}
|v\rangle=g \cdot g|v\rangle & =g \alpha|v\rangle \\
& =\alpha^{2}|v\rangle,
\end{aligned}
$$

i.e., $\alpha= \pm 1$.

Therefer $(-1)^{e} g \in S$ fer sone $e \in \pi_{2}$ and

$$
\begin{aligned}
T^{c}|v\rangle & \left.\left.=\frac{\Perp+(-1)^{c} 9}{2} \right\rvert\, v\right) \\
& =\frac{1+(-1)^{c+e}}{2} \quad|v\rangle
\end{aligned}
$$

2) We hove

$$
\begin{aligned}
\Pi^{0}|v\rangle & =\frac{11+9}{2}|v\rangle \\
& =\frac{11+9}{2} 9,|v\rangle \\
& =9, \frac{11-9}{2}|v\rangle=0, \Pi^{\prime}|v\rangle
\end{aligned}
$$

Then

$$
\begin{aligned}
p^{0} & =\operatorname{Tr}\left(T^{0}|y\rangle\langle y|\right) \\
& =\operatorname{Tr}\left(g_{1} \Pi^{\prime}|v\rangle\langle y|\right) \\
& =\operatorname{Tr}\left(\Pi^{\prime}|v\rangle\langle v| g_{1}\right) \\
& \left.=\operatorname{Tr}\left(\Pi^{\prime}|v\rangle\langle v|\right)=p^{\prime}\right)
\end{aligned}
$$

i.e., $\quad p^{0}=p^{\prime}=1 / 2$.

The state after the meosurevent:

$$
\begin{aligned}
\left|v^{c}\right\rangle & =\sqrt{2} \prod^{c}|x\rangle \\
& =\sqrt{2} g_{1}^{c} \prod^{0}|v\rangle \\
& =g_{1}^{c}\left|v^{0}\right\rangle
\end{aligned}
$$

Thus

$$
\left|y^{c}\right\rangle \in V_{S}
$$

where

$$
S=\left\langle(-1)^{c}, g_{2}, \cdot \cdot, g_{n}\right\rangle
$$

Stabiliur codes
An [n,k] stabilizer code D a vecter space of the form V_{s} where S is a stabililer subgroup of P_{n} with $n-k$ independent generator.

We need two grep - theoretic dignities Let us wite $S=\left\langle g_{1}, \ldots, g_{n-k}\right\rangle$

1) Centralizer af S

$$
z(s)=\left\{g \in P_{n}^{+}: \quad \partial g_{i} g^{+}=\rho_{i} \quad \forall i\right]
$$

2) Normative of S

$$
N(s)=\left[g \in P_{n}: g g_{i} g^{+} \in S \quad \forall_{i}\right]
$$

Lem: $N(s)=z(s)$.
Pret: in greer $Z(J) \subset N(J)$.
Assume $g \in N(S)$. Then either $g_{j} g^{+}=g_{i}$ ar $g_{i} g^{+}=-g_{i}$. In the batter cone we hove

$$
g_{j} g^{+} g_{i}^{+}=-g_{i} g_{j}^{+}=-\mathbb{1} \in S .
$$

But - $\ddagger \notin S$.

Erres-correction conditions for stabiliur codes:
Let $\sum A_{a} J_{a \in I}$ be aporotes in P_{n} such that

$$
A_{a}^{+} A_{0} \notin N(s)-S, \quad \forall a, b \in \Sigma
$$

Then $\left[A_{a}\right]_{a \in \Sigma}$ is a correctable set of ares on the code space $C=V_{s}$.
Prot: The progerter onto the code span C is given by

$$
M_{c}=\prod_{i=1}^{n-k} \frac{11+9_{i}}{2}
$$

We will show that

$$
\Pi_{c} A_{a}^{+} A_{b} \Pi_{c}= \begin{cases}T_{c} & A_{a}^{+} A_{b} \in S \\ \text { Sine } & \underbrace{}_{A_{a}^{+} A_{b} \in N(S)-S}\end{cases}
$$ there con be only two posubilities

Therejee $\left\{A_{a} S_{a}\right.$ satigien the erne corneting conditions since the matrix

$$
B(a, b)= \begin{cases}1 & A_{a}^{+} A_{b} \in S \\ 0 & A_{a}^{+} A_{b} \in P_{n}-N(S)\end{cases}
$$

is Hermitilon.

1) Arrume $A_{a}^{+} A_{b} \in S$:

$$
\Pi_{c} \underbrace{A_{a}^{+} A_{b} M_{c}}_{M_{c}}=\prod_{c}
$$

since elements ef S stavilius C.
2) Assume $A_{a}^{+} A_{b} \in P_{n}-N(S)$:

This meas thot there exiss j_{j} such thot

$$
A_{a}^{+} A_{b} g_{j}=-g_{j} A_{c}^{+} A_{b} .
$$

Then

$$
\begin{aligned}
& \prod_{c} A_{a}^{+} A_{b} \prod_{c}=\prod_{c} A_{a}^{+} A_{b} \prod_{i=1}^{n-k} \frac{11+g_{i}}{2} \\
& =\prod_{C} \frac{\Perp-9 j}{2} \quad A_{a}^{+} A_{b} \prod_{i \neq j} \frac{\|+9 i}{2} \\
& \prod_{i \neq j} \frac{\Perp+9 i}{2} \underbrace{\frac{\Perp+9 j}{2} \frac{\Perp-9 j}{2}}_{\infty} \\
& =\mathbb{D} \text {. }
\end{aligned}
$$

Thenefere the ever-correution cenditions ane satisjied.

Three quait bit tlip code
stebilie gres

$$
s=\left\langle z_{1} z_{2}, z_{2} z_{3}\right\rangle
$$

Errer opertes

$$
\begin{array}{ll}
A_{0}=\mathbb{1} & A_{1}=x_{1} \\
A_{2}=x_{2}, & A_{3}=x_{2}
\end{array}
$$

The ret

$$
\begin{aligned}
&\left\{A_{b}^{+} A_{a} ; a, b=0,1,2,0\right\} \\
&=\left\{1, x_{1}, x_{2}, x_{0},\right. \\
&\left.x_{1} x_{2}, x_{1} x_{0}, x_{2} x_{3}\right\}
\end{aligned}
$$

hos no intesection with $N(S)-S$ and thes cen be carneted

Nine - quit Sher ode
Stabilizer subjere

$$
\begin{array}{r}
s=\left\langle z_{1} z_{2}, z_{2} z_{2}, \cdots, z_{8} z_{9},\right. \\
\left.x_{1} x_{2} \cdots x_{6}, x_{4} x_{5} \cdots x_{9}\right\rangle
\end{array}
$$

Errer oplotes

$$
\begin{aligned}
& A_{0}=\underline{I I} \\
& A_{1}^{(4)}=X_{k}, \quad A_{2}^{(4)}=Y_{k}, \quad A_{s}^{(4)}=Z_{k}
\end{aligned}
$$

where $k=1, ., 9$.
The ret

$$
\begin{array}{r}
\sum\left(A_{a}^{(h)}\right)^{+} A_{b}^{(e)}: k, l=1, \ldots, \\
a, b=0, \ldots, 3
\end{array}
$$

doe not interest with $N(S)-S$.
Hence con be comucted.

The weight of on operater $g \in P_{n}$ i) the number af terns in

$$
g= \pm A_{1} \otimes \cdots \otimes A_{n}, \quad A_{i} \in\{\mathbb{1}, x, y, z],
$$

that are different then ID, ie,

$$
w(g)=\backslash\left\{i=1, \ldots, n: A_{i} \neq \mathbb{\Perp}\right\} 1 .
$$

The distance eq a stabilizer code $C=V_{S}$, when $S=\left\langle g_{1}, \ldots, g_{n-k}\right\rangle$, i) degpred to be the mikimen

$$
d(C)=\min _{g \in N(S)-S}\{\omega(g)\} .
$$

n this case we say C is $[n, k, d]$ otabiliur code.

Cor: $4 C$ is a $[n, k, d)$ otobiliur code where $d \geqslant 2 t+1$ then an error an t quits can be corrected.
Pret: Sike $w\left(A_{0}\right) \leqslant t \quad \forall$ a we hove

$$
\begin{aligned}
& w\left(A_{a}^{+} A_{b}\right) \leqslant 2+\min _{g \in N(s)-s}\lceil w(g)] \geqslant 2++1 .
\end{aligned}
$$

Thereer $A_{a}^{+} A_{b} \notin N(s)->$.

Clanicel linear codes
An $[n, k]$ liver code is giver by the image of an infective linear map

$$
\left.G: 7 l_{2}^{k} \longleftrightarrow 7 l_{2}^{n}\right\}
$$

G is a $n \times k$ motrix with called the gereoter rotrix. entices in \mathbb{T}_{2}.

Ex: Repetition code $([3,1]$ code $)$

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]: \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2}^{3}
$$

sends 0 to 000 a 1 to 111 .

Dud jormulotien
Chase $n-k$ linearly independent
vectes $y_{1}, \cdots y_{n-k}$ in $(i m G)^{D}$ and let

$$
H=\left(\begin{array}{c}
y_{1}^{\top} \\
\vdots \\
y_{n-k}^{\top}
\end{array}\right): \quad \pi_{2}^{n} \longrightarrow \mathbb{Z}_{2}^{n-k}
$$

Then in $G=$ ker H.
H is called the parity check matrix.
Conversely, given sugerke linear mp $H: \mathbb{L}_{2}^{n} \longrightarrow \mathbb{Z}_{2}^{n-k}$ chose linearly in dependent yeats x_{1}, \ldots, x_{k} in ken H.

Defining $G=\left(x_{1} \ldots x_{k}\right)$ gives im $G=$ ker H.

Ex: Fer the repetitien cade the linerbs independert vertes $\{110,011\}$ sper $(\operatorname{imG})^{1}$.
Then

$$
H=\left(\begin{array}{ll}
1 & 1 \\
0 \\
0 & 1
\end{array}\right) .
$$

The Hamming distare betwee the bit string $a_{1} \cdots a$, b, ..bs $\in \mathbb{Z}_{2}^{n}$ is dejpined by

$$
\begin{array}{r}
d\left(a_{1} \ldots a_{n}, b_{1} \ldots b_{n}\right)=1\left\{\left(a_{i}, b_{i}\right): a_{i} \neq b_{i},\right. \\
i=1, \cdots, n\} 1 .
\end{array}
$$

Exercix: $d: \mathbb{\pi}_{2}{ }^{n} \times \mathbb{Z}_{2}{ }^{n}-\mathbb{Z}_{2}$ in a retric.

1) $d(x, y)=d(y, x)$,
2) $d(x, y) \geqslant 0$ with equlity if and
anky if $x=y$,

$$
\text { 3) } d(x, z) \leq d(x, y)+d(y, z) \text {. }
$$

The distence of a cose is degnued to be $d(C)=\min _{x, y \in C} \underbrace{d(x, y)}_{=d(x+y)}$

$$
=\min _{\substack{x \in C \\ x \neq 0}} \underbrace{d(x, 0)}_{w(x)} .
$$

We derte suck ades by $[n, k, d]$.

Pro: Assume that $d(C) \geqslant 2 t+1$.
For $y \in C$ and $e \notin C$ sunn the $d(e, 0) \leqslant+$, the element $z \in C$ with minimum $d(z, y+e)$ satigies $z=y$.

Prot: Assume $z \in C$ is such that $d(z, y+e) \leqslant d(y, y+e)$.

Then

$$
\begin{aligned}
d(z, y) & \leqslant d(z, y+e)+d(y+e, y) \\
& \leqslant 2 d(y+e, y) \\
& =2 d(e, 0) \\
& \leqslant 2+
\end{aligned}
$$

which implies that $z=y$.
sine $d(z, y) \geqslant 2++1$

$$
\text { for } z, y \in C \text { and } z \neq y \text {. }
$$

When $d(C) \geqslant 2 t+1$ the Preposition implies that on errer e with $d(e, 0) \leqslant t$ can be corrected by setting y equal to z in C with minimal $d(z, y+e)$. un this care we say C cen correct t ernes. (Simile to Jtabiliue biden)

Ex: Hamming ode

$$
\text { Let } r \geqslant 2 \text {. }
$$

Let H be the matrix whore caelum are $2^{n}-1$ bit stings of length r which ore nat identically O.
The j-th calm of H is given by the binary representative of \dot{J}.

Then H dives a $\left[2^{r}-1,2^{r}-r-1\right]$ liver ode.

For instem jer $r=3$:

$$
\begin{aligned}
& H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \\
& \text { give a }[7,4]
\end{aligned}
$$

Code distan is 3. (Exerik)

Calderberg - Shor - Steane (CSS) codes
Let C_{1} and C_{2} be $\left[n, k_{1}\right)$ and $\left[n, k_{2}\right]$
lineer codes such that

1) $C_{2} C C_{1}$
2) $d\left(C_{1}\right) \geqslant 2++1$ and $d\left(C_{2}^{1}\right) \geqslant 2++1$.
$\leftrightarrow C_{2}$ and $C_{2} \perp$ comeut + erron.
The CSS code anociated to $\left(C_{1}, C_{2}\right)$ is the subspace $V_{C_{1}, c_{2}} \subset \mathbb{C} \mathbb{T}_{2}{ }^{n}$ sparned by the vectes ef the form

$$
\left|x+C_{2}\right\rangle=\frac{1}{\sqrt{\left|C_{2}\right|}} \sum_{y \in C_{2}}|x+4\rangle
$$

wher $\quad x \in C_{1}$.
Lem: $\operatorname{dim}\left(V_{c_{1}}, c_{2}\right)=2^{k_{1}-k_{2}}$.
Preot: The coseh

$$
\left\{x+C_{2}: x \in C_{1}\right\}
$$

satis fies:

$$
x+C_{2} \cap x^{\prime}+C_{2}= \begin{cases}x+C_{2} & x-x^{\prime} \in C_{2} \\ \varnothing & \text { otherwin_ }\end{cases}
$$

Thereger

$$
\left\langle x+C_{2} \mid x^{\prime}+C_{2}\right\rangle= \begin{cases}1 & x-x^{\prime} \in C_{2} \\ 0 & \text { othermu }\end{cases}
$$

Moreover, there coset partition C_{1}.
Therefore there one $\left|C_{1}\right| /\left|C_{2}\right|$ many corresponding vecters.
Thus

$$
\operatorname{dim} V_{c_{1}, c_{2}}=\frac{\left|c_{1}\right|}{\left|c_{2}\right|}=\frac{2^{k_{1}}}{2^{k_{2}}} .
$$

$V_{C_{1}, c_{2}}$ is a $\left[n_{1} k_{1}-k_{2}\right]$ quentin code.
Pro: $V_{C_{1}, c_{2}}$ is a stabiliur code.
Prot: A stabilizer code is uniquely sperigied by the stabled grep $S=\left\langle g_{1}, \cdots, g_{l}\right\rangle$.
The gereotes cen be orgaired into a motrix, called the check matrix:

$$
M=\left(\begin{array}{c:c}
a_{1} & b_{1} \\
\vdots & \vdots \\
a_{e} & b_{e}
\end{array}\right)
$$

where (ai ,bi) is such that $g_{i}= \pm T_{a_{i}, b_{i}}$
Conversely, the gerestos (up to sign) can be apecigred by the check motrix.

Convider the motrix

$$
M=\left(\begin{array}{cc}
H\left(C_{2}^{\perp}\right) & (1) \\
(D & H\left(C_{1}\right)
\end{array}\right)
$$

This sperigies a stobiliu subgrep $\sin u$

1) Rows of M are Qinealy indppendent since the rows of $H\left(C_{2}^{1}\right)$ and $H\left(C_{1}\right)$ ane eineerly independent.
2) We have $\underbrace{G\left(c_{2}\right)}_{T}$ (exerile)

$$
\begin{aligned}
& M^{\top} \underbrace{}_{\left.\begin{array}{c}
(1) \\
H\left(C_{2}^{\perp}\right) \\
\otimes
\end{array}\right)}=H\left(C_{2}^{\perp}\right)^{\top} H\left(C_{1}\right) \\
&+\underbrace{H\left(C_{1}\right)^{\top} H\left(C_{2}^{\perp}\right)} \\
&(\underbrace{1+\left(C_{2}^{\perp}\right)^{\top}}_{G\left(C_{2}\right)} H\left(C_{1}\right))^{\top} \\
&=\mathbb{D}+\mathbb{D}=\mathbb{D}
\end{aligned}
$$

sinue $C_{2} C C_{1}$.
$\longrightarrow \operatorname{im} G\left(C_{2}\right) C \operatorname{im} G\left(C_{1}\right)=$ ker $H\left(C_{1}\right)$
Next we show thot $V_{y}=V / c_{1}, c_{2}$:

1) $V_{C_{1}, c_{2}} \subset V_{S}$:
1.1) For $a \in H\left(C_{1}^{\perp}\right)$ we hove

$$
\begin{aligned}
T_{a, 0}\left|x+c_{2}\right\rangle= & \frac{1}{\sqrt{\left|C_{2}\right|}} \sum_{y \in C_{2}} \underbrace{T_{a, 0}|x+y\rangle}_{x^{a}} \\
& a \in H\left(c_{2}^{1}\right)=G\left(C_{1}\right)^{\top} \\
& \Rightarrow a \in C_{2} \\
= & \frac{1}{\sqrt{c_{2}}} \sum_{y} \underbrace{x^{a}|x+y\rangle}_{|x+y+a\rangle} \\
& =\left|x+c_{2}\right\rangle
\end{aligned}
$$

1.2) For $b \in H\left(C_{1}\right)$ we hove

$$
\begin{aligned}
T_{0,6}\left|x+c_{2}\right\rangle & =\frac{1}{\sqrt{\left|c_{2}\right|}} \sum_{y} \underbrace{\underbrace{(-1)^{b \cdot(x+y)}|x+y\rangle}_{0,6}|x+y\rangle}_{b \cdot(x+y)=0 \quad \text { since }} \\
& =\left|x+c_{2}\right\rangle .
\end{aligned}
$$

2) $\operatorname{dim} V_{s}=\operatorname{dim} V_{c_{1}, c_{1}}$:

$$
\begin{aligned}
\operatorname{dim} V_{S} & =2^{n-\operatorname{ran}(M)} \\
& =2^{n-\left(k_{2}+\left(n-k_{1}\right)\right)} \\
& =2^{k_{1}-k_{2}} \\
& =\operatorname{dim} V / c_{1}, c_{2} \\
& \operatorname{dem}
\end{aligned}
$$

Cor: Let $C=V_{C_{1}, c_{2}}$. Then

$$
d(c) \geqslant 2++1
$$

Prot: First we conide N(S) where s he the check motrix

$$
M=\left(\begin{array}{cc}
H\left(c_{2}^{1}\right) & 0 \\
0 & H\left(c_{1}\right)
\end{array}\right)
$$

Let N denote the motrix whose sous are lineal independent and gereete the image of $N(S)$ under $\pi: P_{n} \rightarrow \mathbb{Z}_{2}^{2 n}$.
Then

$$
N=\left(\begin{array}{ll}
G\left(c_{1}\right)^{\top} & G\left(c_{2}^{1}\right)^{\top}
\end{array}\right)
$$

This jolo form $N \wedge M^{\top}=D$.

$$
\text { Let } N=\left(\begin{array}{ll}
A & D \\
C & D
\end{array}\right)
$$

Then

$$
\text { Then } \begin{aligned}
& \sim \wedge m^{\top}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
D & H\left(C_{1}\right)^{\top} \\
H\left(C_{L}^{\perp}\right)^{\top} & 0
\end{array}\right) \\
&=\left(\begin{array}{lll}
B H\left(C_{2}^{\perp}\right)^{\top} & A & H\left(C_{1}\right)^{\top} \\
D & H\left(C_{1}^{\perp}\right)^{\top} & C H\left(C_{1}\right)^{\top}
\end{array}\right)=0 \\
& \Leftrightarrow \quad A C C C_{1} \\
& D C C_{2}^{\perp} C C C_{1}
\end{aligned}
$$

Then for $g \in N(s)$ wee hove

$$
\begin{aligned}
w(g) & =w\left(a_{1}+b_{1}, \cdots, c_{n}+b_{n}\right) \\
& \geqslant \max \left\{d\left(c_{1}\right), d\left(c_{2}^{1}\right)\right\} \\
& \geqslant 2++1 .
\end{aligned}
$$

Therefore $V_{C_{1}, c_{2}}$ is a $\left[n, k_{1}-k_{2},+\right]$ stabilizer code.

Steone code
Let H deote the pority cherk motix of the $[7,4]$ transode Let C deote the onsurted ode:

$$
C=\left\{x \in \mathbb{T}_{2}^{7}: H x=0\right\}
$$

Let C^{\perp} deoke the duel ode, thot 1), the geresting metrix is given by H^{\top}.
Let $C_{1}=C$ and $C_{2}=C^{1}$.
The ancutoted CDS ode:

$$
\begin{array}{cc}
\left(\begin{array}{cc}
H\left(C_{2}^{1}\right) & D \\
D & H\left(C_{1}\right)
\end{array}\right) \\
=\left(\begin{array}{cc}
H & (1) \\
D & H
\end{array}\right)
\end{array}
$$

i) called the Steare ode.

Gde disten is 3 , hem cen corut ay risle quait errer.

