Quantum channels
We will wite $T(V, W)$ fer the ret of liver maps

$$
\Phi: L(V) \longrightarrow L(\omega) .
$$

The set $T(V, W)$ is a veeter space:

1) $\bar{\Phi}+\Psi$ is defined by

$$
(\Phi+\Psi)(A)=\Phi(A)+\Psi(A)
$$

2) $\alpha \Phi$ for $\alpha \in \mathbb{C}$ is defined by

$$
(\alpha \Phi)(A)=\alpha \Phi(A)
$$

The adjoint of $\bar{\Phi}$ is the liner nee $\Phi^{+}: L(W) \longrightarrow L(V)$ nijuels spengied by the equation

$$
\left\langle\Phi^{+}(y), x\right\rangle=\langle y, x\rangle .
$$

Given $\Phi \in T\left(V_{1}, W_{1}\right)$ and $\overline{\mathscr{L}} \in T\left(V_{2}, w_{2}\right)$ we cen define the tensor product:

$$
\Phi \otimes \bar{\Psi} \in T\left(V_{1} \otimes v_{2}, w_{1} \otimes W_{2}\right)
$$

to be the unite biker rep satisfying

$$
(\Phi \otimes \Psi)(A \otimes B)=\bar{\Phi}(A) \otimes \Psi(B)
$$

Ex: Partial trace $\operatorname{Tr}_{w} \in T(Y \otimes \omega, V)$ is defined by

$$
\begin{aligned}
\operatorname{Tr}_{\omega}(A \otimes B) & =\mathbb{1}_{L(V)} \otimes \operatorname{Tr}(A \otimes B) \\
& =A \otimes \operatorname{Tr}(B) \\
& =\operatorname{Tr}(B) A
\end{aligned}
$$

The adjoint $\operatorname{Tr}_{\omega}^{+}: L(V) \rightarrow L(V / \otimes W)$ 1) given by

$$
\begin{aligned}
& \operatorname{Tr}_{w}^{+}(A\rangle=\sum_{a, b}\langle\mid a b\rangle\left\langle a b \mid, \operatorname{Tr}_{w}^{+}(A)\right\rangle|a b\rangle\langle a b|
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{a, b}\langle A, \mid a\rangle\langle a \mid\rangle|a b\rangle\langle a b| \\
& =\underbrace{\sum_{a}\left\langle a, A_{a}\right\rangle|a\rangle\langle a|}_{A} \otimes \underbrace{\sum_{b}|b\rangle(b)}_{\Perp_{w}} \\
& =A \otimes \mathbb{1}_{w}
\end{aligned}
$$

A lineer mep $\Phi: L(V) \longrightarrow L(W)$ is

1) poritive if

$$
\Phi(A) \in P_{0 s}(W) \quad \forall A \in P_{0}(V),
$$

2) completely poitive it $\Phi \otimes \mathbb{H}_{L(u)}$ is ponitice $\forall u$,
3) trace preseving if

$$
\operatorname{Tr} \Phi(A)=\operatorname{Tr}(A) \quad \forall A \in L(V)
$$

4) inital if $\Phi(\underline{I I}, v)=11 w$.

A quentom chonel is a completely poritice trace preserving lineer mep $\Phi: L(V) \rightarrow L(\omega)$. We will wite $C(V, W)$ fer the ret of quantur charels and wite simbly $C(V)$ yo $C(V, V)$.

T $\Phi(e) \in \operatorname{Der}(\mathbb{C} \Gamma)$

Ex:
a) Isometric chomels:

For $U \in U(Y, W)$ we con define

$$
\Phi(A)=u A u^{+}
$$

We have

1) $\Phi \otimes \mathbb{1}_{L(u)}(P)=\left(u \otimes \mathbb{1}_{u}\right) P\left(u^{+} \otimes \mathbb{1}_{u}\right)$
i poritie $\forall P \in P_{s}(V \infty U)$,
2) $\operatorname{Tr}\left(U A U^{+}\right)=\operatorname{Tr}(A)$.

Therefore $\Phi \in C(Y, W)$.
b) Replacement chores:

For $G \in \operatorname{Den}(W)$ we cen degine

$$
\Phi(A)=\operatorname{Tr}(A) \sigma .
$$

We have

$$
\text { i) } \Phi \otimes \|_{l(u)}(B)=G \otimes \operatorname{Tr}_{V}(B) \text {, }
$$

which D pounce if $B D$ poritice.
2) $\operatorname{Tr}(\operatorname{Tr}(A) G)=\operatorname{Tr}(A) \operatorname{Tr}(G)=\operatorname{Tr}(A)$.

When $G=\mathbb{1}_{V} / \operatorname{dim} V$ this chanel is celled the completely depolarizing chanel and is denoted by

$$
\Omega(A)=\operatorname{Tr}(A) \frac{\| V}{\operatorname{dim} V}
$$

c) Completely dephaning chonel

This is a liveer map

$$
\Delta: L(\mathbb{C} \Sigma) \rightarrow L(\mathbb{C} \Sigma)
$$

defined by

$$
\Delta(A)=\sum_{a \in \Sigma} A(a, a) \quad|a\rangle\langle a| .
$$

Clamiel chonels
A stochantic operater is a lineer mep $S: \mathbb{R} \sum \rightarrow \mathbb{R} \Gamma$ suce thot

$$
\begin{aligned}
& \text { 1) } S(a, b) \geqslant 0 \quad \forall a, b, \\
& \sum_{a \in \Sigma} S(a, b)=1 \quad \forall b .
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{a} S_{p}(a) & =\sum_{a} \sum_{b} S(a, b) p(b) \\
& =\sum_{b} \sum_{1}^{\sum_{a} S(a, b)} p(b) \\
& =\sum_{b} \underbrace{}_{p(b)=1 .}
\end{aligned}
$$

Therefere

$$
S(p) \in \operatorname{Dist}(\Gamma), \quad \forall p \in D_{i}+(\Sigma)
$$

A clanicel chomel is represented by a stochostic apertor:

A suociated to S we cen degne a quentum chomer

$$
\left.\Phi_{S}(A)=\sum_{b}\left(\sum_{a} S(b, a) A(a, a)\right) \mid b\right)(b \mid
$$

Whes $S=11$ we have

$$
\Phi_{s}=\Delta
$$

Exeruse: Verim thot this is indeed a chanel. You cen une the chorateribtion thot will bow us in later sections.

Pro: $Y \Phi \in T(V, W)$ is poritive then $\bar{\Phi}^{+}$is alo poritive.
Pret: For $Q \in \operatorname{Pos}(W)$ and $P \in P(X)(X)$ we have

$$
\left\langle\Phi^{+}(Q), P\right\rangle=\langle Q, \Phi(p)\rangle \geqslant 0 .
$$

Thereger $\bar{\Phi}^{+}(Q)$ is poritile.
Cer: Tr: $L(V) \rightarrow \mathbb{C}$ is a chennel
Prept: To show thot $\operatorname{Tr} \otimes \mathbb{L}_{L(U)}$ is prite it suggics to show thot $T_{r}^{+} \otimes \mathbb{I}_{L(u)}$ is puitiv. For $P \in P_{o s}(U)$ we hare

$$
T_{r}+\otimes \mathbb{1}_{l(u)}(P)=\mathbb{1}_{v} \otimes P,
$$

which is positive.
We cho hove $\operatorname{Tr}(\operatorname{Tr}(A))=\operatorname{Tr}(A)$.
Pro: The tenzer product $\Phi \otimes \Psi$ of two chanvebs is a chovel. chover of tus form

Prot: Complete paritivity follows from the foct thot tenver produt of poutive opeotes is poutice. Trace presening property jolbos fom $\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B)$.

Cor: $\operatorname{Tr}_{w}=\mathbb{\Perp}_{L(v)} \otimes \operatorname{Tr} \in C(V \otimes w, v)$.

Representoties of chanreb
Let $\Phi: L(V) \longrightarrow L(W)$ be a channel.

1) Naturel represestotion:

This is a bijectice lineer mop

$$
K: T(V, W) \longrightarrow L(V \otimes V, W \otimes W)
$$

degned by

$$
k(\Phi)(\operatorname{vec}(A))=\operatorname{vec}(\Phi(A))
$$

Pro: $k\left(\Phi^{+}\right)=(k(\Phi))^{+}$.
Prept: We have

$$
\Phi(|a\rangle\langle b|)=\sum_{c, d} \Phi(a b, c d) \quad|c\rangle\langle d| .
$$

and

$$
K(\Phi)|a b\rangle=\sum_{c, d} \Phi(a b, c d)|c d\rangle
$$

2) Choi-Jamialkowsi representation:

This is a bijectice liveer map

$$
J: T(V, W) \longrightarrow L(W \otimes V)
$$

defined by

$$
\begin{aligned}
\nu(\Phi) & =\Phi \otimes \underline{\|}_{L(v)}\left(\text { ver } \underline{\|}_{V}\left(\text { ver } \mathbb{H}_{v}\right)^{+}\right) . \\
& =\Phi \otimes \underline{\|}_{L(v)}\left(\sum_{a, b}|a a\rangle\langle b b|\right) \\
& =\sum_{a, b} \Phi(|a\rangle\langle b|) \otimes|a\rangle\langle b| .
\end{aligned}
$$

The rank of J(X) is called the Chai ran.

Pro: $\Phi(A)=\operatorname{Tr}_{V}\left(\partial(\Phi)\left(\underline{\|}_{W} \otimes A^{\top}\right)\right)$.
Prot: We have

$$
\begin{aligned}
& \operatorname{Tr}_{V}\left(J(\Phi)\left(\|_{W} \otimes A^{\top}\right)\right) \\
&=\operatorname{Tr}_{V}\left(\sum_{a, b} \Phi(|a\rangle\langle b|) \otimes|a\rangle\langle b| A^{\top}\right) \\
&=\sum_{a, b} \Phi(|a\rangle\langle b|) \otimes \operatorname{Tr}(|a\rangle\langle b| \underbrace{\left.A^{\top}\right)} \\
&=A_{c, d} A(d, c) \Phi \sum_{c, d} A(d, c)|c\rangle\langle d| \\
&=\Phi(|d\rangle\langle c|) \\
& \hline
\end{aligned}
$$

This gives the inverse map

$$
J^{-1}: L(W \otimes V) \longrightarrow T(V, W) \quad \text { (finer) }
$$

defined by $J^{-1}(C)=\operatorname{Tr}_{V}\left(C\left(\|_{W} \otimes(-)^{\top}\right)\right)$.
3) Kraus representation:

For $\left\{A_{a}, B_{a} \in L(V, W)\right]_{a \in \Sigma}$ we define

$$
\Phi: L(V) \rightarrow L(\omega)
$$

by the formula

$$
\Phi(A)=\sum_{a} A_{a} A B_{a}^{+}
$$

This representation is not unique.
Pro: $\bar{\Phi}^{+}(A)=\sum_{a} A_{a}^{+} A B_{a}$.
Prot: Folbus tron cyclicity of trace.
4) Stinespring representation:

For $A, B \in L(V, W \otimes U)$ we degthe

$$
\Phi(C)=\operatorname{Tr}_{u}\left(A \subset B^{+}\right)
$$

This representation $1 s$ also rot Misuse.
Pr: $\Phi^{+}(C)=A^{+}\left(C \infty H_{u}\right) B$.
Prof: We have

$$
\begin{aligned}
\langle D, \Phi(C)\rangle & =\left\langle D, \operatorname{Tr}_{u}\left(A\left(B^{+}\right)\right\rangle\right. \\
& =\left\langle D \otimes \mathbb{1}_{u}, A C B^{+}\right\rangle \\
& =\operatorname{Tr}\left(D^{+} \otimes \mathbb{I}_{u} A\left(B^{+}\right\rangle\right. \\
& =\langle\underbrace{A^{+} D \otimes \mathbb{1}_{u} B}_{\Phi^{+}(D)}) C\rangle
\end{aligned}
$$

Pro: The following are equivalent.

1) $K(\Phi)=\sum_{a} A_{a} \otimes \bar{B}_{a}$.
2) $J(\Phi)=\sum_{a} \operatorname{vec} A_{a}(\operatorname{vec} B a)^{+}$.
3) $\Phi(A)=\sum_{a} A_{a} A B_{a}^{+}$
4) For $u=\mathbb{C} \Sigma$,
$A=\sum_{a} A a \otimes|a\rangle$ and $B=\sum_{a} B_{a} \otimes|a\rangle$ we have $\Phi(C)=\operatorname{Tr}\left(A C B^{+}\right)$.

Preet: $(3 \Rightarrow 1)$: We hare

$$
\begin{aligned}
k(\Phi) \operatorname{ver}(A) & =\operatorname{vec}(\Phi(A)) \\
= & \sum_{a} \operatorname{vec}\left(A_{a} A B_{a}^{+}\right) \\
& =\sum_{a}\left(A_{a} \otimes \bar{B}_{a}\right)(\operatorname{vec} A)
\end{aligned}
$$

$(3 \Rightarrow 2)$: We have

$$
\begin{aligned}
J(\Phi) & =\Phi \Phi \mathbb{1}_{L(v)}\left(\text { vec } \mathbb{U}_{v}\left(\text { vec } \mathbb{I}_{v}\right)^{+}\right) \\
& =\sum_{a} \underbrace{A_{a} \otimes \mathbb{1}_{v}\left(\text { vec } \mathbb{U}_{v}\right)}_{\text {vec } A_{a}} \underbrace{\left(\text { vec } \mathbb{U}_{v}\right)^{+} B_{a}^{+} \otimes \mathbb{H}_{v}}_{\left(\operatorname{vec} B_{a}\right)^{+}} \text {(Lem) } \\
& =\sum_{a} \operatorname{vec} A_{a}\left(\text { vec } B_{a}\right)^{+} .
\end{aligned}
$$

$(1,2 \Rightarrow 3)$: Similer. (exercize)
(4 3) : We have

$$
\begin{aligned}
\operatorname{Tr}_{u}\left(A C B^{+}\right) & =\sum_{a, b} \operatorname{Tr}_{u}\left(A a \otimes|a\rangle C B_{b}^{+} \otimes\langle b|\right) \\
& =\sum_{a} A_{a} C B_{a}^{+} \\
& =\Phi(C) .
\end{aligned}
$$

$(3 \Rightarrow 4)$: Similer. (exercize)

Cor: Let $\Phi \in T(V, W)$ and $r=\operatorname{rank}(J(\Phi))$.

1) There existis a Kraus nepresentation with $|\Sigma|=r$.
2) There exish a Stinespoly reprerettiben with $u=\mathbb{C} \Sigma$.

Pret: Let $\left\{u_{a}: a \in \Sigma\right\}$ be on exthonernel bans for $\operatorname{im}(J(\Phi))$. Sine ranch $J(\Phi)=r$ we have $|\Sigma|=r$.

Then we con write

$$
\Delta(\Phi)=\sum_{a}\left|u_{a}\right\rangle\left\langle v_{a}\right|
$$

where

$$
\left|v_{a}\right\rangle=J(\Phi)\left|u_{a}\right\rangle .
$$

Let A_{a} and b_{a} be such trot

$$
\text { vel } A_{a}=\left|U_{a}\right\rangle \text { and vic } B a=\left|v_{a}\right\rangle \text {. }
$$

Then

$$
J(\Phi)=\sum_{a} \operatorname{vec} A_{a}\left(\operatorname{vec} b_{a}\right)^{+}
$$

Then the Proposition given the Krak and stikespring representation-

Given \mid va \rangle the vector $|v a\rangle$ are uniquely determined:

$$
\begin{aligned}
& \begin{array}{l}
\qquad(\Phi)=\sum_{a, b} \alpha_{a b}\left|u_{a}\right\rangle\langle b| \\
\left.\begin{array}{l}
\text { since }\left\{\left|u_{a}\right\rangle\right\} \\
\operatorname{im}(J(\Phi)\rangle
\end{array}\right\}=\sum_{a}\left|u_{a}\right\rangle(\underbrace{\sum_{b} \bar{\alpha}_{a b}|b\rangle}_{\left|Y_{a}\right\rangle})^{+}
\end{array} \\
& =\sum_{a}\left|u_{a}\right\rangle\left\langle v_{a}\right| .
\end{aligned}
$$

Characteriotitas of completely poritive mops
For $\Phi \in T(V, W)$ the jollowing ane equivalent.

1) Φ is completely paitice
2) $\Phi \otimes \mathbb{U}_{L(V)}$ is politiue
3) $J(\Phi) \in P_{0>}(W \otimes V)$.
4) There exisb $\left\{A_{a} \in L(V, w)\right\} a \in I \quad$ where $|\Sigma|=r$ ouch thot

$$
\Phi(C)=\sum_{a} A_{a} C A_{a}^{+}
$$

5) There erisb $A \in L(V, W \otimes \mathbb{C} \Sigma)$ when $\mid E l=r$ such that

$$
\Phi(c)=\operatorname{Tr}_{\mathbb{C E}}\left(A \subset A^{+}\right)
$$

Proot: $(1 \Rightarrow 2)$: by definition.
$(2 \Rightarrow 3):$ This pllows for

$$
\begin{aligned}
\left\langle v, \text { vec } \mathbb{1}_{v}\right. & \left.\left(\operatorname{vec} \mathbb{1}_{v}\right)^{+} v\right\rangle \\
= & \left\langle\left(\operatorname{vec} \mathbb{1}_{v}\right)^{+} v,\left(\text { vec } \mathbb{U}_{v}\right)^{+} v\right\rangle \geqslant 0,
\end{aligned}
$$

i.e. $\operatorname{vec} \mathbb{1}_{r}\left(\text { vec } \mathbb{1}_{r}\right)^{+}$being paitice.
$(3 \Rightarrow 4)$: By spertrol deonperitien:

$$
\begin{aligned}
J(\Phi) & =\sum_{a} \lambda_{a}\left|v_{a}\right\rangle\left\langle v_{a}\right|, \quad \lambda_{a} \in \mathbb{R}_{>0} \\
& =\sum_{a} v_{\overline{\lambda_{a}}}\left|v_{a}\right\rangle\left\langle v_{a}\right| v_{\lambda_{a}} \\
& =\sum_{a} \operatorname{vec} A_{a}\left(v_{c c} A_{a}\right)^{+}
\end{aligned}
$$

where vec $A_{a}=\sqrt{\lambda_{a}}\left|v_{a}\right\rangle$.

Then the Propoutien gives the Grams repsesertation. $(4 \Rightarrow 1)$: Given $P \in P_{0},(V \otimes U)$ the operter

$$
\begin{array}{r}
\Phi \otimes \mathbb{\|}_{L(u)}(P)=\sum_{a} \underbrace{\left(A_{a} \otimes \mathbb{U}_{u}\right) P\left(A_{a}^{+} \otimes \mathbb{U}_{u}\right)}_{\text {This D poribue }}, \\
\text { Write }^{\left(P=B^{+}\right. \text {the }} \\
A_{a} \otimes \mathbb{U}_{u} P A_{a}^{+} \otimes \mathbb{U}=C C^{+} \text {where } \\
C=A_{a} \otimes \mathbb{U}_{u} B .
\end{array}
$$

D poritile sine sum of positive operates is positive. (Exercise).
$(4 \Rightarrow 5)$: By the Proposition.
$(\delta \Rightarrow 1)$: For positive P we have

$$
\Phi(C) \otimes \mathbb{1}_{L(U)}(P)=\operatorname{Tr}_{\mathbb{C} \Sigma}(\underbrace{A \otimes \mathbb{U}_{u} P A^{+} \otimes \mathbb{1}_{u}}_{\text {poitu }})
$$

by positivity of the partial trace.

Unitary equivalence of Krauss representatives Let $\Phi(A)=\sum_{a} A_{a} A A_{a}^{+}$and $\Psi(A)=\sum_{a} B a A a^{+}$be such that

$$
\Phi(A)=\Phi(A) \quad \forall A \in L(V)
$$

Then there exist $U \in U(\mathbb{C} \Sigma)$ such that

$$
B_{a}=\sum_{b \in \Sigma} U(a, b) A_{b} .
$$

Pneot: We have $J(\Phi)=J(\Psi)$, thot is,

$$
\sum_{a} \operatorname{vec} A_{a}\left(\text { vec } A_{a}\right)^{+}=\sum_{a} \text { vec } B_{a}\left(\text { vec } B_{a}\right)^{t}
$$

Define $u_{1} v \in V \otimes W \otimes \mathbb{C} \sum b_{y}$

$$
|u\rangle=\sum_{a} \operatorname{vec} A_{a} \otimes|a\rangle, \quad|v\rangle=\sum_{a} \operatorname{vec} B_{a} \otimes|a\rangle .
$$

Then

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{C} E}(|u\rangle\langle u|) & =J(\bar{\Phi}) \\
& =J(Q) \\
& =\operatorname{Tr}_{ष I}(|v\rangle\langle v|) .
\end{aligned}
$$

By the unitery equivalace of prufiotion:

$$
|v\rangle=\|_{\text {wov }} \otimes U|u\rangle
$$

for som $u \in u(\mathbb{C} \Sigma)$.
Therepre vec $B_{u}=\left(\underline{I I}_{w \bullet v} \otimes\langle a|\right) \underbrace{|v\rangle}$

$$
\begin{aligned}
& =\sum_{b}\left(\|_{w \otimes v} \otimes\langle a l)\left(\operatorname{vec} A_{b} \otimes U|b\rangle\right)\right. \\
& =\sum_{b} U(a, b) \text { vec } A_{b} .
\end{aligned}
$$

Unitary equivalence of stirespring representatives Let $\Phi(C)=\operatorname{Tr}\left(A C A^{+}\right)$and
$\Psi(C)=\operatorname{Tr}_{u}\left(B C B^{+}\right)$be such that

$$
\Phi(c)=\Phi(c) \quad \forall c \in L(V)
$$

Then there exist $U \in U(U)$ such that

$$
B=1_{w} \otimes u A
$$

Proof: Define

$$
A_{a}=\|_{w} \otimes\langle a| A \text { and } B_{a}=\|_{w} \otimes\langle a| B .
$$

Then

$$
\underbrace{\operatorname{Tr}\left(A C A^{+}\right)}_{\sum_{a} A_{a} C A_{a}^{+}}=\underbrace{\operatorname{Tr}\left(B \subset B^{+}\right)}_{\sum_{a} B_{a} C B_{a}^{+}}
$$

is equirablet to

$$
\sum_{a} A_{a} C A_{a}^{+}=\sum_{a} B a C b_{a}^{t}
$$

Hence the remult follows from the previen result.

Charccteinotiens of trace preseving mops
For $\Phi \in T(V, W)$ the jolloung are equivalert.

1) Φ is a trace presering mep.
2) Φ^{+}is a inital rep.
3) $\operatorname{Tr}_{w} J(\Phi)=\mathbb{1 1}_{V}$.
4) There exisb $\left\{A_{a}, \text { Ba } \in L(X, W)\right\}_{a \in \Sigma}$ such thot

$$
\Phi(A)=\sum_{a} A_{a} A B_{a}^{+}
$$

and

$$
\sum_{a} A_{a}^{+} B a=\| v \text {. }
$$

5) Thee exisb $A, B \in L(V, W \otimes U)$ such thot

$$
\Phi(C)=\operatorname{Tru}\left(A \subset B^{t}\right)
$$

and $A^{+} B=\Perp V$.
Preot: $(1 \Rightarrow 2)$: We have

$$
\begin{aligned}
\left\langle\mathbb{H}_{v}, A\right\rangle & =\operatorname{Tr}(A) \\
& =\operatorname{Tr}(\Phi(A)) \\
& =\left\langle\mathbb{1}_{w}, \bar{\Phi}(A)\right\rangle \\
& =\left\langle\Phi^{+}\left(\mathbb{1}_{w}\right), A\right\rangle
\end{aligned}
$$

Therefere $\bar{L}^{+}\left(1_{w}\right)=\mathbb{1} v$.
$(2 \Rightarrow 1)$: Similer.
$(2 \Rightarrow 4)$: Kram representation for \mathbb{Z} exisb by the Corallen above.

We have $\Phi^{+}(A)=\sum_{a} A_{a}^{+} A$ ba.
un particiler, $\|_{V}=\Phi^{+}\left(\|_{w}\right)=\sum_{a} A_{a}^{+} B_{a}$.
$(4 \Rightarrow 2)$: Similar.
$(2 \Leftrightarrow 5)$: Follow from

$$
\Phi^{+}(C)=A^{+}(C \otimes \mathbb{1} u) B
$$

$(1 \Rightarrow 3)$: For $V=\mathbb{C} \Gamma$ we have

$$
\begin{aligned}
\operatorname{Tr}_{w}(J(\Phi)) & =\sum_{a, b \in \Gamma} \underbrace{\operatorname{Tr}(\Phi(|a\rangle\langle b)))}_{S_{a, b} \text { sine } \Phi}|a\rangle\langle b| \\
& =\sum_{a}|a\rangle\langle a|=I_{v} .
\end{aligned}
$$

$(3 \Rightarrow 1)$: We have

$$
\begin{aligned}
\sum_{a}|a\rangle\langle a|=\|_{v} & =\operatorname{Tr}_{w}(\nu(\Phi)) \\
& =\sum_{a, b} \operatorname{Tr}(\Phi(|a\rangle\langle b|))|a\rangle(b)
\end{aligned}
$$

which implies that

$$
\operatorname{Tr}(\Phi(|a\rangle\langle b|))=\delta_{a, b}=\operatorname{Tr}(|a\rangle\langle b|)
$$

Cor: The jollouity are equivalent.

1) Φ is a chanel
2) $J(\Phi) \in P_{\Delta>}(\omega \oplus V)$ and $\operatorname{Tr}_{\omega}(J(\Phi))=\mathbb{1}_{V}$.
3) There exist $\left\{A_{a} \in L(V, w)\right\rangle_{a \in \Sigma}$ sun tot

$$
\Phi(A)=\sum_{a} A_{c} A A_{a}^{+}
$$

and

$$
\sum_{a} A_{a}^{+} A_{a}=\mathbb{1 1}_{V}
$$

4) Thee exist $A \in L(V, w \otimes U)$ such that

$$
\Phi(C)=\operatorname{Tr}_{u}\left(A C A^{+}\right)
$$

and $A^{+} A=\underline{I} v$, i.e., $A \in U\left(V, w_{\theta} U\right)$.

Another impotent conseques is trot $C(V, W)$ is convex and compact:

We have a linear bijection

$$
J: T(V, W) \rightarrow L(W \otimes V)
$$

using which we cen wite

$$
\begin{aligned}
C(Y, W)= & J^{-1}\{C \in \operatorname{Pas}(W \otimes V): \\
& \operatorname{Tr}_{\omega} C=\underline{U},
\end{aligned}
$$

convex and closed.
It is also bounded since

$$
\begin{aligned}
U \subset U_{1}= & \operatorname{Tr} C=
\end{aligned} \begin{array}{|r}
r_{v} \\
\\
\\
=\operatorname{Tr}_{r_{v}} C \mathbb{I}_{v} \\
\\
=\operatorname{dim} V
\end{array}
$$

Aside:
A sober $X \subset \mathbb{R}^{n}$ is convex it

$$
\begin{aligned}
\lambda u+(1-\lambda) v \in X \quad & \forall u, v \in X, \\
& \lambda \in[0,1]
\end{aligned}
$$

Pro: Let $u \in V_{\otimes} W$ and $P \in P_{\infty}(V \otimes U)$ be such trot

$$
\operatorname{Tr}_{w}|u\rangle\langle u|=\operatorname{Tr}_{u} P
$$

Then there exist $\Phi \in C(w, U)$ such that

$$
\mathbb{1}_{L(x)} \otimes \Phi \quad|u\rangle\langle u|=P .
$$

Prof: Let U^{\prime} be such that $\operatorname{dim} U^{\prime} \geqslant \operatorname{ran} P$ and $\operatorname{dim}\left(U \otimes U^{\prime}\right) \geqslant \operatorname{dir} W$. Let $A \in U\left(W, U \otimes U^{\prime}\right)$ and $v \in V \otimes U \otimes U^{\prime}$ be a pinificotile of P.

We have

$$
\begin{aligned}
\operatorname{Tr}_{u_{\otimes}}(& \left.\mathbb{\|}_{v} \otimes A|u\rangle\langle u| \|_{v} \otimes A^{+}\right) \\
& =\operatorname{Tr}_{w}|u\rangle\langle u| \\
& =\operatorname{Tr}_{u} P \\
& =\operatorname{Tr}_{u \otimes u^{\prime}} \quad|v\rangle\langle v|
\end{aligned}
$$

By unitary equivalence of puigiotios the exisb $B \in U\left(U \otimes U^{\prime}\right)$ sur that

$$
\left(\mathbb{1}_{v} \otimes B\right)\left(\mathbb{1}_{v} \otimes A|u\rangle\right)=|v\rangle
$$

Then degne $\Phi \in T(\omega, U)$ as glows:

$$
\Phi(C)=\operatorname{Tr}_{u^{\prime}}\left((B A) C(B A)^{+}\right)
$$

This is a crenel $\operatorname{rim}(B A)^{+} \& A=\| \mathrm{w}$.

We have

$$
\begin{aligned}
\mathbb{I}_{(v)} & \otimes \Phi(|u\rangle\langle u|) \\
& =\operatorname{Tr}_{u^{\prime}}\left(\left(\underline{\|}_{v} \otimes B A\right)|u\rangle\langle u|\left(\mathbb{\|}_{v} \otimes B A\right)^{+}\right) \\
& =\operatorname{Tr}_{u^{\prime}}(|v\rangle\langle v|)=P
\end{aligned}
$$

Note: Let $A \in U\left(\omega, \omega^{\prime}\right)$.
we hare

$$
\begin{aligned}
& T_{r_{w}}\left(\mathbb{H}_{v} \otimes A \quad|a\rangle\langle b| \otimes|c\rangle\langle d| \|_{v} \otimes A^{+}\right) \\
& =|a\rangle\langle\infty| \otimes r_{w},\left(A|c\rangle\langle d| A^{+}\right) \\
& \left\langle d \backslash A^{+} A l c\right\rangle \\
& \langle d \backslash c\rangle \\
& =\operatorname{rrw}_{w}(|c\rangle\langle d| \otimes|c\rangle\langle d l \text {. }
\end{aligned}
$$

Ex The chornel $\Delta \in C(\mathbb{C} \Sigma)$

$$
\Delta(A)=\sum_{a \in \Sigma} A(a, a)|a\rangle\langle a\rangle
$$

is called the completely dephoury chonel.

1) Naturel representotion:

$$
\begin{aligned}
k(\Delta)|a b\rangle & =\operatorname{vec}(\Delta(|a\rangle\langle b|)) \\
& =\left\{\begin{array}{cc}
|a\rangle\langle a| & a=b \\
D & 0 / \omega,
\end{array}\right.
\end{aligned}
$$

thot is, $k(\Delta)=\sum_{a} \underbrace{|a a\rangle\langle a, a| .}$
2) Chei represe totion:

$$
\begin{aligned}
\partial(\Delta) & =\sum_{a, b} \Delta(|a\rangle(b \mid) \otimes|a\rangle\langle b| \\
& =\sum_{a}|a\rangle\langle a| \otimes|a\rangle\langle a) \\
& =\sum_{a} \underbrace{|a a\rangle}_{\text {vee } A} \underbrace{\langle a|}_{\left(\text {ver } \mid b_{a}\right)} .
\end{aligned}
$$

We have

$$
\langle v, J(\Delta) v\rangle=\sum_{a}|\langle v \mid a a\rangle|^{2} \geqslant 0,
$$

hence Δ is chomel. (Trace presering
3) Krous represestotion:

$$
\Delta(A)=\sum_{a} \underbrace{|a\rangle\langle a|}_{A_{a}} A \underbrace{|a\rangle\langle a|}_{b_{a}^{+}}
$$

4) Stinespony represe totion

$$
\Delta(C)=\operatorname{Tr}_{\mathbb{C} \Sigma}\left(A C A^{+}\right)
$$

where $A=\sum_{a} \underbrace{|a\rangle\langle a|}_{A_{a}} \otimes|a\rangle$.

Measuremerts
A measurement is a furtiben

$$
\mu: \Sigma \sim \operatorname{Pos}(V)
$$

set of meornervent eutesmes
such thet

$$
\sum_{a \in \Sigma} \mu(a)=\mathbb{1 1} v .
$$

meanrevert opeotes.
A chamel $\Phi \in C(Y, W) D$ colled a quentur-to-clanicel charel if

$$
\Phi=\Delta \Phi
$$

Pro: The jolloning are equivalert.

1) For every quentun-to-clanicel $\Phi \in C(V, \mathbb{I} \Gamma)$ there exisb a unique meorremet $\mu: \Gamma \longrightarrow P_{D}(V)$ oun thot

$$
\Phi(A)=\sum_{a}\langle\mu(a), A\rangle|a\rangle\langle a| .
$$

2) For every meornement $\mu: \Gamma \longrightarrow P_{0 S}(V)$ the lineer nop Φ above is a quentum-to-clanal chonel.

Proof: $(1 \Rightarrow 2)$: We have

$$
\begin{aligned}
\Phi(A) & =\Delta \Phi(A) \\
& =\sum_{a}\langle\mid a\rangle\langle a \mid, \Phi(A)\rangle|a\rangle\langle a| \\
& =\sum_{a}\left\langle\Phi^{+}(|a\rangle\langle a|), A\right\rangle|a\rangle\langle a| .
\end{aligned}
$$

Then degine

$$
\mu: \Gamma \longrightarrow \operatorname{Pas}(V)
$$

by $\mu(a)=\Phi^{+}(|a\rangle\langle a|)$.
Φ^{+}is poritile and unital shee $\Phi \mathbb{D}$ is poritue and preserves trace.
Therefore

$$
\begin{aligned}
\sum_{a} \Phi^{+}(|a\rangle\langle a|) & =\Phi^{+}\left(\sum_{a}|a\rangle\langle a|\right) \\
& =\Phi^{+}\left(\mathbb{1}_{v}\right) \\
& =\mathbb{1}_{V}
\end{aligned}
$$

If ν is another measurement satisfying $\Phi(A)=\sum_{a}\langle r(a), A\rangle|a\rangle\langle a|$ then

$$
\sum_{a}\langle\mu(a)-\nu(a), A\rangle|a\rangle\langle a|=D
$$

for all A, which implies

$$
\langle\mu(a)-\nu(a), A\rangle=0, \forall A \Rightarrow \mu(a)=\nu(a) .
$$

(2 $\Rightarrow 1)$: The Chi representation D given by

$$
\begin{aligned}
& \nu(\Phi)=\sum_{a, b} \Phi(|a\rangle\langle b|) \otimes|a\rangle\langle b) \\
& =\sum_{a, b} \sum_{c}\langle\mu(c), \mid a\rangle\langle b \mid\rangle|c\rangle\langle c| \otimes|a\rangle\langle b| \\
& =\sum_{c}|c\rangle\langle c| \otimes \sum_{a, b} \underbrace{\langle a\rangle(b)}_{\langle\mu(c), \mid a\rangle\langle b \mid\rangle\langle b\rangle, \overline{\mu(c)}\rangle}
\end{aligned}
$$

$$
=\sum_{c} \underbrace{|c\rangle\langle c| \otimes \overline{\mu(c)}}
$$

pontine \Rightarrow sum D particle
Also

$$
\begin{aligned}
\operatorname{Tr}_{w} J(\Phi) & =\sum_{c} \operatorname{Tr}(|c\rangle\langle c|) \overline{\mu(c)} \\
& =\sum_{c} \overline{\mu(c)} \\
& =\overline{\mathbb{I}}_{v}=\mathbb{1}_{v} .
\end{aligned}
$$

Φ is quentun-to-clanclel sine $\Phi(A)$ D diagonel fer al $A \in L(V)$.

As a consequere the set of meawneverts

$$
\mu: \Gamma \rightarrow \operatorname{Pos}(V)
$$

cen be identified with the set of quentur-to-lanal chanel:

$$
\{\Delta \Phi: \bar{Q} \in C(V, \mathbb{C} \Sigma)\} C C(V, \mathbb{C} \Sigma)
$$

This is precisely the image of

$$
\Delta: C(V, \mathbb{L}) \rightarrow C(V, \mathbb{C} \Sigma)
$$

sending $\overline{\mathbb{L}}$ to $\Delta \Phi$.
Hence compact and convex.
Partial meosurements
Let $\mu: \Gamma \rightarrow \operatorname{Pos}(V)$ be a meas revert. The partial meesunevert arociated to μ i) the channel

$$
\bar{\Phi}: L(V \otimes W) \rightarrow L(\mathbb{C} \wedge \otimes W)
$$

defined by

$$
\Phi(A)=\sum_{a}|a\rangle\langle a| \otimes \operatorname{Tr}_{V}\left(\mu(a) \otimes \mathbb{I}_{w} A\right)
$$

A measurement $\mu: \Gamma \rightarrow P_{o s}(V)$ is called projective if $\mu(a) \in \operatorname{Proj}(V), \forall a \in T$.
P_{r} : For a projective meosrervent μ the set $\{\mu(a): a \in \Gamma\}$ is orthogond.
Pret: We have

$$
\begin{aligned}
\mathbb{U}_{V} & =(\underbrace{\left.\sum \sum_{a} \mu(a)\right)^{2}}_{\mathbb{U}_{V}} \\
& =\underbrace{\sum_{a} \mu(a)}_{D v}+\underbrace{\sum_{v(a)} \mu(b)}_{a \neq b}
\end{aligned}
$$

Taking trace of $\sum_{a \neq b} \mu(a) \mu(b)=D_{V}$ we get

$$
\begin{aligned}
0 & =\sum_{a \neq b} \operatorname{Tr}(\mu(a) \mu(b)) \\
& =\sum_{a \neq b} \underbrace{\langle\mu(a), \mu(b)\rangle}_{\in \mathbb{R} \geqslant 0}
\end{aligned}
$$

Therefore $\langle\mu(a), \mu(b)\rangle=0 \quad \forall \quad a \neq b$.
Ex: For $V=\mathbb{C} \Sigma$ we have the projective measurement

$$
\mu(a)=|a\rangle\langle a|
$$

The associated chomer

$$
\Phi(e)=\sum_{a} \underbrace{\langle\mu(a), e\rangle}_{\langle a| e|a\rangle}|a\rangle\langle a\rangle
$$

Naimark's theorem
Let $\mu: \Gamma \longrightarrow$ Pos (V) be a mearunement.
There exists $A \in U(V, V \otimes \mathbb{C} F)$ such that

$$
\mu(a)=A^{+}\left(\mathbb{H}_{V} \otimes|a\rangle\langle a|\right) A
$$

Moreover, for a unit vector $u \in \mathbb{T}$ there exists a progeutice meownervent

$$
v: \Gamma \rightarrow \operatorname{Pes}(V \otimes \mathbb{C} \Gamma)
$$

such that

$$
\langle\nu(a), C \otimes \mid u\rangle\langle u \mid\rangle=\langle\mu(a), C\rangle
$$

Prot: Define

$$
A=\sum_{6} \sqrt{\mu(6)} \otimes|6\rangle .
$$

Then

$$
A^{+}\left(\|_{V \otimes} \otimes(a)\langle a)\right) A=\mu(a)
$$

and

$$
A^{+} A=\sum_{b} \mu(6)=\underline{11}_{v} .
$$

Let $B \in U(V \otimes \mathbb{C} T)$ be such tho

$$
B\left(\mathbb{H}_{V} \otimes|u\rangle\right)=A
$$

Define $\nu(a)=B^{+}\left(\underline{U}_{V} \otimes|a\rangle\langle a|\right) B$.
Then

$$
\begin{aligned}
& \langle(a), C \otimes \mid u\rangle\langle u \mid\rangle= \\
= & \operatorname{Tr}(B^{+}\left(\mathbb{1}_{v} \otimes|a\rangle\langle a|\right) B C \otimes \mathbb{I}_{\mathbb{C}} \mathbb{1}_{v} \otimes|u\rangle \underbrace{\mathbb{H}_{v} \otimes\langle u|})
\end{aligned}
$$

$$
\begin{aligned}
=\operatorname{Tr}(& \underbrace{\mathbb{I}_{V} \otimes\langle u| B^{+}}_{A^{+}} \mathbb{I}_{V^{*}} \otimes|a\rangle\langle a| \underbrace{B \|_{V} \otimes|u\rangle}_{A} C) \\
& =\operatorname{Tr}\left(A^{+} \mathbb{H}_{V} \otimes|a\rangle\langle a| A C\right) \\
& =\langle\mu(a), C\rangle
\end{aligned}
$$

Pawli chomers (Weyl covorbet chover) Let $\mathbb{Z}_{d}=\{0,1, \ldots, d-1\}$ derote the additive grap ef inteyer, nodulo d.
We define two openotes in U($\mathbb{C} T a)$

$$
\begin{aligned}
& X=\sum_{a}|a+1\rangle\langle a| \\
& z=\sum_{a} w^{a}|a\rangle\langle a|
\end{aligned}
$$

where $\omega=e^{2 \pi i / d}$ Wenl apeoter The Powli opeoter anocicted to a pair $(a, b) \in \mathbb{K}_{d}^{2}$ is defined by

$$
T_{a b}=\sqrt{w}^{a b} x^{a} z^{b}
$$

Ex: For $d=2$ we have $\sum_{c} \omega^{b c}|a+c\rangle\langle c|$

$$
\begin{array}{ll}
T_{00}=\mathbb{1} & T_{10}=X \\
T_{01}=z & Y_{11}=Y=i \times z .
\end{array}
$$

Lem: 1) $T_{a b} T_{e f}=w^{b e-a f} T_{e f} T_{a b}$
2) $T_{a b}^{d}=$ II
3) $\operatorname{Tr}\left(T_{a b}\right)=d \delta_{a b, \infty}$
4) $T_{a b} T_{e f}=\sqrt{w}^{b e-a f} T_{a+e},{ }^{b+f}$
5) $T_{a b}^{-1}=T_{-a,-b}=T_{a b}^{+}$.

Preet: (1) We have

$$
\begin{array}{rl}
T a b & T e f \\
\text { Ta } & =\sqrt{\omega}^{a b} X^{a} z^{b} \sqrt{\omega}^{e f} X^{e} z^{f} \\
z X|a\rangle & \left.=z^{a+1}\left|a=\omega^{a+1}\right| a+1\right\rangle \\
X z|a\rangle & =\omega^{a} X|a\rangle=\omega^{a}|a+1\rangle \\
\Rightarrow z X & =\omega X z
\end{array}
$$

Then $z^{b} x^{e}=\omega^{b e} x^{e} z^{b}$

$$
\begin{aligned}
& =\sqrt{w}^{a b+e f}{ }_{\omega}^{b e} \underbrace{x^{a+e} z^{b+f}}_{x^{b} \underbrace{x^{a d} z^{f} x^{a}}} \\
& =w^{b e-a f} \sqrt{v}^{e f} x^{e} z^{f} \sqrt{v}^{a b} x^{a} z^{b} \\
& =\omega^{b l-a f} T_{e f} T_{a b}
\end{aligned}
$$

(2) We have

$$
\begin{aligned}
& T_{a b}^{d}=\left(\sqrt{w}^{a b} x^{a} z^{b}\right)^{d} \\
& =\left(x^{a} z^{b}\right)\left(x^{a} z^{b}\right) \cdots\left(x^{a} z^{b}\right) \\
& =\underbrace{\omega^{b(d-1) a} \omega^{b(d-2) a} \cdots \omega^{b a}}_{b a(d-1) d / 2} \underbrace{x^{d a} \underbrace{z^{d b}}_{\mathbb{L}}}_{\mathbb{\Perp}} \\
& \underbrace{\omega} \\
& =\mathbb{1} \text {. }
\end{aligned}
$$

(3) We have

$$
\begin{aligned}
& \operatorname{Tr}(T a b)=\operatorname{Tr}\left(\sqrt{\omega}^{a b} X^{a} z^{b}\right) \\
& =\sqrt{\omega}^{a b} \operatorname{Tr}\left(\left(\sum_{e}|e+1\rangle\langle e|\right)^{a}\left(\sum_{f} \omega^{f}|f\rangle\langle f|\right)^{b}\right) \\
& =\sqrt{\omega}^{a b} \operatorname{Tr}\left(\sum_{e}|e+a\rangle\langle e| \sum_{f} \omega^{f b}|f\rangle(f \mid)\right. \\
& =\sqrt{\omega^{a b}} \sum_{e} \omega^{e^{b}} \underbrace{\operatorname{Tr}(|e+a\rangle\langle e|)}_{\delta a, 0} \\
& =\left\{\begin{array}{lc}
d & (a, b)=(0,0) \text { in } \mathbb{Z}_{d}^{2}, \\
0 & \text { therme. }
\end{array}\right.
\end{aligned}
$$

Note $a=0, b \neq 0$:

$$
\begin{aligned}
\sum_{e} \omega^{e^{b}} & =\sum_{e}\left(\omega^{b}\right)^{e} \\
& =\sum_{e}(\underbrace{e^{2 \pi i b / d}}_{\mu})^{e} \\
& =0
\end{aligned}
$$

Y $\mu \in U(\mathbb{C})$ such that $\mu \neq 1 \times \mu^{d}=1$ then

$$
\sum_{e=1}^{d} \mu^{e}=0
$$

$\sin \mu^{d}-1=0$ implies $(\mu-1) \sum_{e} \mu^{e}=0$
(4) We hove

$$
T_{a b} T_{e f}=\sqrt{w}^{a b+e}{ }_{w}^{b e} X^{a+e} \mathcal{Z}^{b+f}
$$

On the other hend,

$$
T_{a+e}, b+f=\underbrace{\sqrt[v w]{(a+e)(b+f)}}_{v^{a b+a f+e b+e f}} x^{a+e} z^{b+f}
$$

Therefere

$$
\begin{aligned}
T_{a b} T_{e f} & =\omega^{b e} \sqrt{\omega}^{-a f-e b} T_{a+e}, b+f \\
& =\sqrt{w}^{b e-a f} T_{a}+e, b+f .
\end{aligned}
$$

(5) We heve

$$
\begin{aligned}
T_{a b} T_{-a,-b} & =\sqrt{w}^{-b a+a b} T_{0,0} \\
& =\mathbb{1}
\end{aligned}
$$

Nose thot $X^{+}=X^{-1}$ and $Z^{+}=Z^{-1}$. (exerulu)
Therefer

$$
\begin{aligned}
T_{a b}^{+} & =\sqrt{w}^{-a b} \underbrace{z^{-b}}_{i^{b a} x^{-a} z^{-b}} \\
& =\sqrt{w}^{a b} X^{-a} z^{-b} \\
& =T_{-a,-b} .
\end{aligned}
$$

Cor: $\left\{\frac{1}{\sqrt{d}} T_{a b}:(a, 0) \in \mathbb{K}_{d}^{2}\right\}$ is on orthonermel boms fer $L\left(\mathbb{T} L_{d}\right)$.
Preet: By the Lemine:

$$
\begin{aligned}
\left\langle T_{a b}, T_{e f}\right\rangle & =\operatorname{Tr}\left(T_{a b}^{+} T_{e f}\right) \\
& =\operatorname{Tr}\left(T_{-a,-b} T_{e f}\right) \\
& =\operatorname{Tr}\left(v^{-b e}+a_{f} T_{-a+e,-b+f}\right) \\
& =d S_{a b}, e f
\end{aligned}
$$

A cherel $\Phi \in C\left(\mathbb{C} \mathbb{Z}_{d}\right)$ is colled a Pali chonel (Weyl covarent) if

$$
\begin{aligned}
\Phi\left(T_{a b} A T_{a b}^{+}\right) & =T_{a b} \Phi(A) T_{a b}^{+} \\
& \sigma^{\circ} \text { all }(a, b) \in \mathbb{K}_{d}^{2} .
\end{aligned}
$$

Pro: The golbouity are epmivalert.

1) \bar{D} is a Par li chewer.
2) $\Phi\left(T_{a b}\right)=A(a, b) T_{a b}, \Delta(a, b) \in \mathbb{C}$.
3) $\Phi(A)=\sum_{a, b} B(a, b) T a b \Delta T_{a b}^{+}$,
where $B(a, b) \in \mathbb{R}_{\geqslant 0}$ and $\sum_{a, b} B(a, b)=1$.
Prof: $(1=22)$: Ne have

$$
\begin{aligned}
T_{a b}^{+} \Phi\left(T_{a b}\right) T_{e f}^{+} & =T_{a b}^{+} T_{e f}^{+} T_{e f} \Phi\left(T_{a b}\right) T_{e f}^{+} \\
& =T_{a b}^{+} T_{e f}^{+} T_{e f} \Phi\left(T_{a b}\right) T_{e f}^{+} \\
& =\underbrace{T_{e f}^{+} T_{e f}^{+} \Phi(\underbrace{}_{e f} T_{a b} T_{e f}^{+})}_{a b} \\
& =T_{e f}^{+} T_{a b}^{+} T_{a b}^{+} \Phi\left(T_{a b}^{+}\right)
\end{aligned}
$$

i.e., $\left[T_{a b}^{+} \Phi\left(T_{a b}\right), T_{e f}^{+}\right]=0$.

Nototile: $[A, B]=A B-B A$. operators
Note that $[A, B]=\mathbb{A B}=B A$ commute Sim $\{$ Tefl leif is a vans this implies then

$$
T_{a b}^{+} \Phi\left(T_{a b}\right)=A(a, b) \mathbb{1}
$$

for some $A(a, 0) \in \mathbb{C}$.
Thus

$$
\Phi\left(T_{a b}\right)=A(a, b) T a b .
$$

($2 \Rightarrow 1$): We hove

$$
\begin{aligned}
\Phi(\underbrace{T_{a b} T_{e f}}_{w_{b-a f}} T_{a b}^{+}) & =w^{b e-a f} T_{a b} \underbrace{}_{A(e, f}\left(T_{e f}\right) T_{e f} \\
& =A(e, f) T_{a b} T_{e f} T_{a b}^{+} \\
& =T_{a b} \Phi\left(T_{e f}\right) T_{a b}^{+} .
\end{aligned}
$$

For $A \in L(V)$ ye hove

$$
\begin{aligned}
& \Phi(T_{a b} \underbrace{A} T_{a b}^{+})=\sum_{e_{1 f}} \alpha_{e f} \underbrace{\Phi}_{e_{f}} \alpha_{e f}\left(T_{a b} T_{e f} T_{a b}^{+}\right) \\
&=T_{a b} \Phi\left(T_{e f}\right) T_{a b}^{+} \\
&=T_{a b} \Phi\left(\sum_{e, f} \alpha_{e f} T_{e f}\right) T_{a b}^{+} \\
& T_{e f}(A) T_{a b}^{+}
\end{aligned}
$$

($3 \Rightarrow 2$): We hove

$$
\begin{aligned}
\Phi\left(T_{e f}\right) & =\sum_{a, b} B(a, b) \underbrace{T_{e f}}_{\omega^{b-a} T_{e f} T_{a b}} \\
& =\sum_{a, b} B(a, b) \omega^{b e-a f} T_{e f} \\
& =A(e, f) T_{e f}
\end{aligned}
$$

when

$$
\Delta(e, f)=\sum_{a, b} B(a, b) w^{b e-a f} T_{e f .}
$$

Defune the operter:

$$
F=\frac{1}{\sqrt{d}} \sum_{a, b} \omega^{a b}|a\rangle(b)
$$

colled the Fousier tranform.
Then we have

$$
\begin{aligned}
d F+B F & =\sum_{a, b} \omega^{-a b}|b\rangle\langle a| B \sum_{e, f} \omega^{e f}|e\rangle\langle f| \\
& =\sum_{a, b, e_{1} f} \omega^{e f-a b} B(a, e)|b\rangle\langle f| \\
& =\sum_{b, f} \sum_{a, e} \omega^{f-a b} B(a, e)|b\rangle\langle f) \\
& =\sum_{b, f} A(f, b\rangle \quad|b\rangle\langle f| \\
& =A^{T} \\
& d F^{+B F}=A^{T} .
\end{aligned}
$$

$(2 \Rightarrow 3)$: Similer, follow tron

$$
B=\frac{1}{d} F A^{\top} F^{+}
$$

The chei representition of $\overline{\mathscr{L}}$ is given by

$$
\begin{aligned}
& J(\Phi) \sum_{a, b} B(a, b) \underbrace{\operatorname{vec} T a b}_{\text {bans pr }}(\operatorname{vec} T a b)^{+} . \\
& \mathbb{T} \mathbb{T}_{d} \otimes \mathbb{C} \mathbb{T}_{d}
\end{aligned}
$$

$J(\Phi)$ poritive inplien thot $B(a, 0) \in \mathbb{R} \geqslant 0$.
Trare presevation implien thot

$$
\underbrace{\operatorname{Tr}(\Phi(A))}_{\operatorname{Tr} A}=\sum_{a, b} B(a, b) \operatorname{Tr}(A)
$$

which gives $\sum_{a, b} B(a, b)=1$.

Ex: 1) Completery depobriving chamel

$$
\Omega(A)=\frac{1}{d^{2}} \sum_{a, b} T_{a b} A T_{a b}^{+} .
$$

2) Completely depharing choned

$$
\Delta(A)=\frac{1}{d} \sum_{a} T_{o a} A T_{o a}^{+}
$$

Teleportation
Teleportatien is a bavic protool for tranmitting quentin informotion:

Here $\quad V=u=W=\mathbb{C} \mathbb{Z}_{d}$.
We fix

1) a state z in $\operatorname{Der}(u \circledast \omega)$

$$
\begin{aligned}
r & =\frac{1}{d} \text { vec } \mathbb{1}(\text { vee } \mathbb{1})^{+} \\
& =\frac{1}{d} \sum_{b, c}|b\rangle\langle c| \otimes|b\rangle\langle c|
\end{aligned}
$$

2) a measurement

$$
\mu: \mathbb{Z}_{d}^{2} \longrightarrow \operatorname{Pos}(V \otimes u)
$$

where

$$
\begin{aligned}
\mu(a b) & =\frac{1}{d} \operatorname{vec} T_{a b}\left(\text { vee } T_{a b}\right)^{t} \\
& =\frac{1}{d} \sum_{e, f} \omega^{b e-b f}|a+e\rangle\langle a+f| \otimes|e\rangle\langle f|
\end{aligned}
$$

Recall $T_{a b}=\sqrt{\omega}^{a b} \sum_{e} \omega^{b e}|a+e\rangle\langle e|$
3) a chanel fer each $(a, b) \in \mathbb{Z}_{d}{ }^{2}$

$$
\Phi_{a b}(e)=T_{a b} e T_{a b}^{+}
$$

Define the chores
i) $\Phi_{1}: L(V) \rightarrow L(V \otimes U \otimes W)$

$$
\bar{D}_{1}(e)=e \otimes \tau
$$

ii)

$$
\begin{aligned}
& \Phi_{2}: L(V \otimes U) \rightarrow L\left(\mathbb{C} \mathbb{Z}_{d}^{2}\right) \\
& \Phi_{2}(\sigma)=\sum_{a, b} \operatorname{Tr}_{V \otimes U}(\mu(a b) 6) \quad|a b\rangle\langle a b)
\end{aligned}
$$

iii) $\Phi_{3}: L\left(\mathbb{C} \mathbb{Z}_{d}^{2} \otimes W\right) \rightarrow L\left(\mathbb{C} \mathbb{Z}_{d}^{2} \otimes W\right)$

$$
\Phi_{3}\left(\sum_{a b} p(a b)|a b\rangle\langle a b| \otimes \gamma\right)
$$

$$
=\sum_{a b} p(a b) \underbrace{\Phi_{\Phi_{3}}(|a b\rangle\langle a b| \otimes \gamma)}_{a b}
$$

Lem: $\operatorname{vec} \mathbb{H}(\text { vec II })^{+}=\frac{1}{d} \sum_{a, b} \bar{T}_{a b} \otimes T_{a b}$.
Pret: We have

$$
\begin{aligned}
& \frac{1}{d} \sum_{a, b} \bar{T}_{a, b} \otimes T_{a b} \\
& =\frac{1}{d} \sum_{a, b} \sum_{c, e} \omega^{b e-b c}|a+c\rangle\langle c| \otimes|a+c\rangle\langle c| \\
& \frac{1}{d} \sum_{b} \omega^{b(e-c)}=\delta_{e, c} \\
& T_{a b}=\sqrt{\omega}^{a b} \sum_{e}^{\omega^{b e}}(a+e\rangle\langle e\rangle \\
& \bar{T}_{a b}=\sqrt{\omega}^{-a b} \sum_{c} \omega^{-b c}|a+c\rangle\langle c| \\
& =\sum_{a, c} \underbrace{\mid a+c}_{f})(c|\otimes| a+c)(c \mid \\
& =\sum_{f, c}|f\rangle\langle c| \otimes|f\rangle\langle c| \text {. }
\end{aligned}
$$

Pro: We have

$$
\Phi=\Phi_{3} \circ \Phi_{2} \otimes \mathbb{1}_{L(w)} \circ \Phi_{1}
$$

satisfies $\bar{\Phi}=\mathbb{I}_{L(V)}$
i.e., $\overline{\mathscr{D}}(A)=A, \quad \forall A \in L(V)$.

Preot: Since $\left\{T_{a b}\right\}_{a, b}$ is a bors it sugfics to show $\Phi\left(T_{a b}\right)=T_{a b} \quad \forall a, b$.

We have

$$
\begin{aligned}
& \Phi\left(T_{a b}\right)=\Phi_{3} \circ \bar{\Phi}_{2} \otimes \mathbb{1}_{L(w)} \circ \underbrace{\Phi_{1}\left(T_{a b}\right)}_{T_{a b} \otimes r}
\end{aligned}
$$

We une

$$
\begin{aligned}
& \left(A_{0} \otimes A_{1}\right) \operatorname{vec}(B)=\operatorname{vec}\left(A_{0} B A_{1}^{\top}\right) \\
& =\frac{1}{d^{3}} \sum_{c_{1} e} T_{r-g}\left(\left(\text { vec } T_{c e}\right)^{+} \operatorname{vec}\left(T_{\text {ab }} T_{c e} T_{f g}^{+}\right)\right) T_{c e} T_{f g} T_{c e}^{+}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{d} \sum_{f, g} T_{r}\left(T_{f g}^{+} T_{a b}\right) T_{f g}=T_{a b} . \\
& \left\langle T_{f g}, T_{a b}\right\rangle=d \delta_{f g, ~ a b}
\end{aligned}
$$

That is,

$$
\begin{equation*}
\Phi\left(T_{a b}\right)=T_{a b} \quad \forall(a, b) \in \mathbb{T}_{d}^{2} \tag{G}
\end{equation*}
$$

Operatiosel meoning:

$$
\begin{aligned}
& \Phi_{2} \otimes \perp_{L(w)} \circ \Phi_{1}\left(T_{a b}\right)= \\
= & \frac{1}{d^{2}} \sum_{c, e}|c e\rangle\left(c e \mid \otimes \omega^{c g-e f} d \delta_{f g, a b} T_{f 9}\right. \\
= & \sum_{c, e} \frac{1}{d^{2}}|c e\rangle\langle c e| \otimes \omega^{c b-e a} T_{a b}
\end{aligned}
$$

For a deruity opeoter

$$
e=\sum_{a, b} \alpha_{a b} T_{a b}
$$

we obton

$$
\begin{aligned}
& \Phi_{L} \otimes \Perp_{L(w)} \circ \Phi_{1}(e)= \\
& \sum_{c, e} \frac{1}{d^{2}}(c e)(c e \mid \otimes \underbrace{\sum_{a, b} \alpha_{a b} \omega^{c b-e a} T_{a b}}_{e_{c e}}
\end{aligned}
$$

4 the outcome of measurement μ is $(c, e) \in \mathbb{Z}_{d}^{2}$ then the compound register (with colonel states $\mathbb{K}_{a} \times \mathbb{T}_{d} \times \mathbb{T}_{d}$) is in state

$$
|c e\rangle\langle c e| \otimes e_{c e}
$$

Then Φ_{3} makes the gird correction:

1) $\backslash c e\rangle\langle c e \backslash i>d i s e r d e d$.
2) 2 ce becomes $^{\text {2) }}$

$$
\begin{aligned}
T_{c e} e_{c e} T_{c e}^{+} & =\sum_{a, b} \alpha_{a b} w^{c b-e a} T_{c e} \underbrace{e a-c b} T_{a b} T_{c e}^{+} \\
& =\sum_{a, b} \alpha_{a b} T_{a b} \\
& =e .
\end{aligned}
$$

after Alice communicates the comical ingormotiben of the measurement out come $(c, e) \in \mathbb{Z}_{d}^{2}$ to Bob.

Chamebs on denvity operaton
chooring $\Sigma \cong\{0,1, . .||\Sigma|-1\}$:
we can construct a bons ef $L(\mathbb{C} \Sigma)$ conusting of denzity opertes

$$
e_{a b}=\left\{\begin{array}{cl}
|a\rangle\langle a| & a=b \\
\frac{1}{2}(|a\rangle+|b\rangle)(\langle a|+\langle b|) & a<b \\
\frac{1}{2}(|a\rangle+i|b\rangle)(\langle a|-i\langle b|) & a\rangle b
\end{array}\right.
$$

Therepre a chomel $\Phi \in C(V, W)$ is determined by its restriction to denvity opeotors:

$$
\Phi \mathbb{L}: \operatorname{Den}(V) \rightarrow \operatorname{Den}(w) .
$$

We have

$$
\Phi\left(\sum_{i} p_{i} e_{i}\right)=\sum_{i} p_{i} \Phi\left(e_{i}\right)
$$

where $P_{i} \in \mathbb{R}_{\geqslant 0}$ and $\sum_{i} P_{i}=1$.
Since $\left\{e_{a, b}\right\}_{a, b}$ is also a banis for Herm (V) we have

$$
\Phi: \operatorname{Her}(V) \rightarrow \operatorname{Her}(W)
$$

\mathbb{R}-linear.

Single qubit chomers
A chovel $\Phi \in C\left(\mathbb{C} \mathbb{T}_{2}\right)$ is deternined by its restriction to demity opeston:
$\Phi: \operatorname{Den}\left(\mathbb{C} \tau L_{2}\right) \rightarrow \operatorname{Den}\left(\mathbb{C} \mathbb{T}_{2}\right)$

Pro: $\operatorname{Den}\left(\mathbb{C} \not \mathbb{C l}_{2}\right)=$

$$
\left\{e=\frac{1}{2} \sum_{a, b} r_{a b} T_{a b}: \quad r_{00}=1, \quad, \quad \begin{array}{rl}
& r_{10}^{2}+r_{11}^{2}+r_{10}^{2} \leq 1
\end{array}\right\}
$$

Proof: Sime $\left\{T_{a b}\right\}$ is a bas of $L\left(\mathbb{T} \mathbb{Z}_{2}\right)$ we cen write

$$
e=\frac{1}{2} \sum_{a, b} r_{a b} T_{a b}, r_{a b} \in \mathbb{C} \text {. }
$$

We have

1) $\operatorname{Tr} e=1$:

$$
\begin{aligned}
1=\operatorname{Tr} e & =\frac{1}{2} \frac{\sum}{a, b} r_{a b} \underbrace{\operatorname{Tr}\left(T_{a b}\right)}_{2 \delta_{a b, 00}} \\
& =r_{00} .
\end{aligned}
$$

2) $e \in \operatorname{Pas}\left(\mathbb{C} \mathbb{Z}_{2}\right)$:

Recall

$$
T_{00}=\mathbb{L}, T_{10}=X, T_{01}=Z, T_{11}=Y .
$$

Then

$$
e=\frac{1}{2}\left(\begin{array}{ll}
r_{00}+r_{01} & r_{10}-i r_{11} \\
r_{10}+i r_{11} & r_{00}-r_{01}
\end{array}\right)
$$ and the eigenvalues ore given by

$$
\lambda_{ \pm}=\frac{1}{2}\left(r_{00} \pm \sqrt{r_{10}^{2}+r_{11}^{2}+r_{01}^{2}}\right) .
$$

Note $e \in \operatorname{Pos}\left(\mathbb{C} \mathbb{Z}_{2}\right) \Leftrightarrow \lambda \pm \in \mathbb{R}_{\geqslant 0}$.
Combining (1) and (2):

$$
\begin{aligned}
& \frac{1}{2}\left(1 \pm \sqrt{r_{10}^{2}+r_{11}^{2}+r_{01}^{2}}\right) \geq 0 \\
& \Leftrightarrow \quad r_{10}^{2}+r_{11}^{2}+r_{01}^{2} \leqslant 1
\end{aligned}
$$

We will identify $00,10,11,01$ with $0,1,2,3$; respectively:

$$
e=\frac{1}{2} \sum_{i=0}^{3} r_{i} G_{i} \quad\left(\begin{array}{l}
G_{0}=\mathbb{1} \\
\sigma_{1}=x \\
\sigma_{2}=Y \\
\sigma_{3}=z
\end{array}\right)
$$

where $r_{0}=1$ and $\sum_{i=1}^{3} r_{i}^{2} \leqslant 1$.

Picture:

Bloch sphere

Aside: Eigenvalues of

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

ane the nob eft

$$
\begin{aligned}
& \operatorname{det}(A-\lambda \underline{\|})=0 \\
& \operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right) \\
& =(a-\lambda)(a-\lambda)-b c \\
& =\lambda^{2}+(-a-d) \lambda+a d-b c \\
& \lambda \pm=\frac{a+d \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}
\end{aligned}
$$

We will need the jolboung baic chomeb:

1) Determstic bit flip

$$
\Phi_{1}(e)=x e x^{+}
$$

2) Determistic phase tlip:

$$
\Phi_{3}(e)=z e z^{t}
$$

2) Determistic bit-phare flip

$$
\Phi_{2}(e)=y e y^{+}
$$

Thm: Every unital chenul $\Phi \in C\left(\mathbb{C} \mathbb{T}_{2}\right)$, i.e., $\Phi\left(\mathbb{1}_{\mathbb{C} \mathbb{Z}_{2}}\right)=\mathbb{1}_{\mathbb{C} \mathbb{Z}_{2}}$, D of the form

$$
\Phi=\Phi^{u_{1}} \cdot(\underbrace{\sum_{i=1}^{3} p_{i} \Phi_{i}}_{\text {Pawli channel. }}) \cdot \Phi^{u_{2}}
$$

where $p_{i} \in \mathbb{R} \geqslant 0$ and $\sum_{i} p_{i}=1$
and

$$
\Phi^{u}(e)=u e u^{+}, \quad u \in u\left(\mathbb{C} \mathbb{\pi}_{2}\right)
$$

Proot: Φ : Her $\left(\mathbb{C} \mathcal{L}_{2}\right) \rightarrow$ Her $\left(\mathbb{C} \mathbb{Z}_{2}\right)$ is \mathbb{R} - linear
wniting

$$
A=\frac{1}{2} \sum_{i=0}^{3} r_{i} G_{i}, \quad r_{i} \in \mathbb{R}
$$

for a Hermitibn opeoter, Φ cen be
exprened as a 4×4 real rotvix:

$$
\Phi \Phi^{M}=\left(\begin{array}{lllll}
M_{00} & M_{01} & M_{02} & M_{03} \\
M_{10} & - & - & - & \\
M_{20} & & M & \\
M_{30} & & & &
\end{array}\right)
$$

for some real 3×3 motrix M.
Ne hove

1) Φ is trau presering:

$$
\operatorname{Tr}\left(\overline{\mathscr{L}}\left(\sigma_{i}\right)\right)=\operatorname{Tr}\left(\sigma_{i}\right)
$$

This implies twot

$$
M_{01}=M_{0_{2}}=M_{03}=0 .
$$

2) Φ is mitol:

This implien tbt

$$
M_{10}=M_{20}=M_{20}=0 .
$$

Let $\overline{\mathscr{L}}(A)=\frac{1}{2} \sum_{j=0}^{D}>_{j} G_{j}$.
Then (1) $\Longleftrightarrow s_{0}=0$ for $A=\frac{1}{2} 6 j \quad j=1,2,3$.
(2) $\Leftrightarrow \quad s_{j}=0 \quad j=1,2,3 \quad$ for $\quad A=\frac{1}{2} \sigma_{0}$.

Therefere

$$
\Phi^{M}=\left(\begin{array}{ccc}
\perp & 1 & D_{1 x_{3}} \\
- & -1 & -1 \\
& 1 & \\
D_{3 \times 1} & 1 & M \\
& 1 &
\end{array}\right)
$$

By the singuler value decorporition:

$$
M=O_{1} D^{\prime} O_{2}
$$

Where

$$
D^{\prime}=\left(\begin{array}{ccc}
s_{1}^{\prime} & 0 & 0 \\
0 & s_{2}^{\prime} & 0 \\
0 & 0 & s_{3}^{\prime}
\end{array}\right) \quad s_{i}^{\prime} \in \mathbb{R}_{\geqslant 0}
$$

and O_{1}, O_{2} are ortlogaral 3×3 rotics.

$$
O^{\top}=0^{-1}
$$

Any arthojerel rotrix O con be unitter as

$$
O=\overbrace{(-1)^{a}}^{\operatorname{det} 0} R, \quad a \in \mathbb{Z} L_{2}
$$

whee R is a rotation notrix.

Then

$$
\begin{aligned}
M & =O_{1} D^{\prime} O_{2} \\
& =(-1)^{a_{1}} R 1 D^{\prime}(-1)^{a_{2}} O_{2} \\
& =R_{1}(-1)^{a_{1}+a_{2}} D^{\prime} R_{2} \\
& =R, D R_{2}
\end{aligned}
$$

where

$$
D=\left(\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & د_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right)
$$

and $s i \in \mathbb{R}$.
Note that $\Phi^{M}=\Phi^{R_{1}} \cdot \Phi^{D} \cdot \Phi^{R_{2}}$.
Below we will see that there exons $u \in U\left(\mathbb{C} \pi_{n}\right)$ such tot

$$
\Phi^{u}=\Phi^{R}
$$

For the rest we will assume

$$
M=\left(\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & د_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right)
$$

whee si $\in \mathbb{R}$.
Next we compute the Choli operater e $\bar{\Phi}=\bar{\Phi}^{M}$.

We will un

$$
\left.\begin{array}{l}
|0\rangle\langle 0|=\frac{1}{2}(\underline{1}+z) \\
|0\rangle\langle 1|=\frac{1}{2}(x+i y) \\
|1\rangle\langle 0|=\frac{1}{2}(x-i y) \\
|1\rangle\langle 1|=\frac{1}{2}(\mathbb{1}-z) .
\end{array}\right\} \begin{aligned}
& |a\rangle\langle b|= \\
& \sum\left\langle T_{a b}, \mid a\right\rangle\langle b \mid\rangle T_{a b} .
\end{aligned}
$$

Then we hove

$$
\begin{aligned}
& \Phi(|0\rangle\langle 0|)=\frac{1}{2}\left(\mathbb{1}+s_{3} z\right)=\frac{1}{2}\left(\begin{array}{cc}
1+s_{2} & 0 \\
0 & 1-s_{3}
\end{array}\right) \\
& \Phi(|0\rangle\langle 1|)=\frac{1}{2}\left(s_{1} X+i s_{2} y\right)=\frac{1}{2}\left(\begin{array}{cc}
0 & s_{1}+s_{2} \\
s_{1}-s_{2} & 0
\end{array}\right) \\
& \Phi(|1\rangle\langle s|)=\frac{1}{2}\left(s_{1} X-i s_{2} y\right)=\frac{1}{2}\left(\begin{array}{cc}
0 & s_{1}-s_{2} \\
s_{1}+s_{2} & 0
\end{array}\right) \\
& \Phi(|1\rangle\langle 1|)=\frac{1}{2}\left(\mathbb{1}-s_{3} z\right)=\frac{1}{2}\left(\begin{array}{cc}
1-s_{3} & 0 \\
0 & 1+s_{3}
\end{array}\right) .
\end{aligned}
$$

The Chai opeoter is given by

$$
J(\Phi)=\frac{1}{2} \sum_{a, b \in \mathbb{K}_{2}} \underbrace{\Phi(|a\rangle\langle b|) \otimes|a\rangle\langle b|}
$$

kronecker product

$$
\begin{array}{r}
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \vdots \\
a_{n 1} B & \cdots & a_{n n} B
\end{array}\right) \\
=\frac{1}{4}\left(\begin{array}{cccc|c}
1+s_{3} & 0 & 1 & 0 & s_{1}+s_{2} \\
0 & 1-s_{3} & 1 & s_{1}-s_{2} & 0 \\
- & - & - & - \\
0 & s_{1}-s_{2} & 1 & 1-s_{3} & 0 \\
s_{1}+s_{2} & 0 & 1 & 0 & 1+s_{3}
\end{array}\right)
\end{array}
$$

The eigenvalues of $J(Q)$ are given by the eigenvalue of the two block:

$$
\begin{aligned}
& \frac{1}{4}\left(\begin{array}{ll}
1-s_{3} & s_{1}-s_{2} \\
s_{1}-s_{2} & 1-s_{3}
\end{array}\right) \text { and } \frac{1}{4}\left(\begin{array}{ll}
1+s_{3} & s_{1}+s_{2} \\
s_{1}+s_{2} & 1+s_{3}
\end{array}\right) \\
& \lambda_{0}=\left(1+s_{1}+s_{2}+s_{3}\right) / 4 \\
& \lambda_{1}=\left(1+s_{1}-s_{2}-s_{3}\right) / 4 \\
& \lambda_{2}=\left(1-s_{1}+s_{2}-s_{3}\right) / 4 \\
& \lambda_{3}=\left(1-s_{1}-s_{2}+s_{3}\right) / 4 .
\end{aligned}
$$

The map $\bar{\Phi}>$ completely pritive if and only if $\lambda_{i} \geqslant 0, \forall i$:

$$
\begin{array}{ll}
1+s_{1}+s_{2}+s_{3} \geqslant 0 & 1-s_{1}+s_{2}-s_{3} \geqslant 0 \\
1+s_{1}-s_{2}-s_{3} \geqslant 0 & 1-s_{1}-s_{2}+s_{2} \geqslant 0,
\end{array}
$$

or more compactly

$$
\begin{array}{lr}
1+s_{3} \geqslant\left|s_{1}+s_{2}\right| & \text { (Fujiwara- Algoet } \\
1-s_{3} \geqslant\left|s_{1}-s_{2}\right| . & \text { conditions) }
\end{array}
$$

There inequalities specify a pelstope in \mathbb{R}^{D} with vertices

$$
\underbrace{(1,1,1)}_{\text {identity }} \underbrace{(1,-1,-1)}_{\text {dit flip }} \underbrace{(-1,1,-1)}_{\begin{array}{c}
\text { bit-phore } \\
\text { flip }
\end{array}} \underbrace{(-1,-1,1)}_{\text {phon tip }} .
$$

Hyperplenes:

$$
z=-1-x-y
$$

(1)
$z=1-x-y$
(2)
$z=1+x-y \quad(>)$

$$
z=-1+x+y
$$

(4)

(1)
$z=0$

$z=-1$

$z=1$

Lem: Let R be a 3×3 otatilen sotrix. Then there exirts $U \in U\left(\mathbb{C} \mathbb{T}_{2}\right)$ such thot

$$
\Phi^{R}(e)=u e u^{+}
$$

Preot: $U\left(\mathbb{C} \mathbb{L}_{2}\right)$ ach on $\operatorname{Den}\left(\mathbb{C} \not \mathbb{K}_{2}\right)$:
Given $e \in \operatorname{Den}\left(\mathbb{T} \mathbb{K}_{\text {N }}\right)$ the opeoter Ue U^{+}is also a dervity opeoter:

$$
\text { 1) } \operatorname{Tr}\left(u_{e} u^{+}\right)=\operatorname{Tr} e=1
$$

2) Pritivity:

$$
\left\langle v, u_{e} u^{+} v\right\rangle=\left\langle u_{v}^{+}, e u_{v}^{+}\right\rangle \geqslant 0
$$

We cen wite

$$
\begin{aligned}
u & =\sum_{a} \underbrace{\lambda_{a}}_{\lambda_{a}}\left|v_{a}\right\rangle\left\langle v_{a}\right| \\
& =e^{i v_{a}}, v_{a} \in \mathbb{R} \geqslant 0
\end{aligned}
$$

where $A \in \operatorname{Her}\left(\mathbb{C} \mathbb{K}_{2}\right)$:

$$
A=\sum_{a} v_{a}\left|v_{a}\right\rangle\left\langle v_{a}\right| .
$$

Writily $\quad A=\frac{1}{2} \sum_{i=0}^{3} \alpha_{i} \quad G_{i}$
we have

$$
\begin{aligned}
u & =e^{-i\left(\alpha_{0} \mathbb{L}+\alpha_{1} x+\alpha_{2} y+\alpha_{3} z\right) / 2} \\
& =e^{-i \alpha_{0} / 2} e^{-i\left(\alpha_{1} x+\alpha_{2} y+\alpha_{3} z\right) / 2}
\end{aligned}
$$

We have

$$
u e u^{+}=v e v^{+}
$$

Let us wite

$$
e=\frac{1}{2}(H+\underbrace{r \cdot \sigma}_{\sum_{i=1}^{3} r_{i} \sigma_{i}})
$$

Then

$$
\rho e^{\frac{i}{2} \alpha \cdot \sigma}=\frac{1}{2}\left(11+\left(R_{\alpha}(|\alpha|) r\right) \cdot 6\right) .
$$

when e
$R_{\hat{\alpha}}(|\alpha|) \quad$) the notuhen matrix rotating about $\hat{\alpha}$ by ale $|\alpha|$ unit vecter in the direction of α.

Reference: Geometry of quentin states by Ingemer bergtionon and
Karol Zyszkowski

Exercise

Cor: Every unital chanel $\Phi \in \subset\left(\mathbb{C} \mathbb{Z}_{2}\right)$ is a mixed unitary chorea:

$$
\Phi(A)=\sum_{a \in \Sigma} p(a) U_{a} A U_{a}^{+}
$$

when $U_{a} \in U\left(\mathbb{C} \mathbb{Z}_{2}\right)$, $p(a) \in \mathbb{R} \geqslant 0$ such that $\quad \sum_{a} p(a)=1$.
Pref: We hove

$$
\begin{aligned}
\Phi(A) & =\Phi^{U_{1}} \cdot \Phi^{D} \cdot \Phi^{U_{2}}(A) \\
& =\sum_{i=0} P_{i} \underbrace{U_{1} G_{i} U_{2}}_{V_{i}} A \underbrace{U_{2}^{+} \sigma_{i} U_{1}^{+}}_{V_{i}^{+}}
\end{aligned}
$$

Examples of single qubit chomels

1) Bit and phose flips
1.1) Bit flip

$$
\begin{aligned}
& \Phi=p \mathbb{L}+(1-p) \Phi_{1} \\
& M=(1-p)\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)+p\left(\begin{array}{lll}
1 & & \\
& -1 & \\
& & -1
\end{array}\right) \\
&=\left(\begin{array}{lll}
1 & 1-2 p & \\
& & 1-2 p
\end{array}\right)
\end{aligned}
$$

1.2) Phave flip

$$
\begin{aligned}
& \Phi=(1-p) \mathbb{1}+p \Phi_{0} \\
& M=\left(\begin{array}{ccc}
1-2 p & & \\
& 1-2 p & \\
& & \\
& & 1
\end{array}\right)
\end{aligned}
$$

1.3) Bit-phave flip

$$
\begin{aligned}
& \Phi=(1-p) \mathbb{1}+p \Phi_{2} \\
& M=\left(\begin{array}{lll}
1-2 p & \\
& 1 & \\
& & 1-2 p
\end{array}\right)
\end{aligned}
$$

2) Depolariving chouel

$$
\Phi(e)=p \underbrace{\frac{\mathbb{1}}{2}}_{\pi}+(1-p) e
$$

Completely dephery chomer $\Omega(e)=11 / 2$

$$
\begin{aligned}
& \Omega(e)=\frac{1}{4} \sum_{i=0}^{2} \Phi_{i}(e) \\
&=\left(1-\frac{3 p}{4}\right) \Perp+\frac{p}{4} \sum_{i=1}^{3} \Phi_{i} \\
& M=\left(1-\frac{3 p}{4}\right)\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right)-\frac{p}{4}\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right) \\
&=(1-p)\left(\begin{array}{lll}
1 & 1 & \\
& 1 & 1
\end{array}\right)
\end{aligned}
$$

3) Phose domping

$$
\Phi(e)=A_{0} \rho A_{0}^{+}+A_{1} e A_{1}^{+}
$$

where

$$
A_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1-\gamma}
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & \sqrt{\gamma}
\end{array}\right) .
$$

4) Amplitude domping

$$
\Phi(e)=A_{0} \rho A_{0}^{+}+A_{1} e A_{1}^{+}
$$

where

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1-\gamma}
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
0 & \sqrt{\gamma} \\
0 & 0
\end{array}\right) . \\
& \Phi(\mathbb{1})=\left(\begin{array}{cc}
1 & 0 \\
0 & 1-\gamma
\end{array}\right)=(1-\gamma / 2) \mathbb{1}+\gamma / 2 \quad Z
\end{aligned}
$$

(not unital)
Exenu: find $[t$: M] jor (3) к (4).

$$
\begin{aligned}
\operatorname{Tr}_{V}\left(\operatorname{vec} \sqrt{p}(\operatorname{rec} \sqrt{p})^{+}\right) & =\sqrt{p} \sqrt{p}^{+} \\
& =p
\end{aligned}
$$

Channel fidelity
The channel fidelity of $\Phi \in C(V, W)$ with respect to $P \in P_{0}(V)$ is defined by

$$
F(\Phi, P)=F\left(|u\rangle\langle u|, \Phi \otimes \underline{\|}_{L(v)}(|u\rangle\langle u|)\right)
$$

where $|u\rangle=\operatorname{vec}(\sqrt{P}) \cdot$ ($|u\rangle D$ a purgoition)
(Monotonicity of fidelity)
Pro: For $\Phi \in C(Y, W)$ and $P, Q \in P_{0}(V)$ we have

$$
F(P, Q) \leqslant F(\Phi(P), \Phi(Q))
$$

Prot: Let $A \in U(V, W \otimes U)$ be such that

$$
\Phi(C)=\operatorname{Tr}_{u}\left(A \subset A^{+}\right) \cdot\binom{\text { Stinespring }}{\text { representation }}
$$

Let $|u\rangle,|v\rangle \in V \otimes U^{\prime}$ be purifiotios of P and Q such trot

$$
F(D, Q)=\langle u \mid v\rangle \text {. (Uhemen the) }
$$

Then

$$
|\tilde{u}\rangle=A \otimes \underline{1}_{u^{\prime}}|u\rangle
$$

i) a purigiotion for $\bar{\Phi}(P)$:

$$
\begin{aligned}
\left.\operatorname{Tr}_{u_{\otimes} u^{\prime}}(\| \tilde{u}\rangle\langle\tilde{u}|\right) & =\operatorname{Tr}_{u \otimes u^{\prime}}\left(A \otimes \underline{\|}_{u^{\prime}}|u\rangle\langle u) A^{+} \otimes \mathbb{1}_{u^{\prime}}\right) \\
& =\operatorname{Tr}_{u}\left(A \operatorname{Tr}_{u^{\prime}}(|u\rangle\langle u|) A^{+}\right) \\
& =\operatorname{Tr}_{r_{u}}\left(A P A^{+}\right) \\
& =\Phi(P) .
\end{aligned}
$$

Similerly $|\vec{v}\rangle$ is a panigiotion jor $\Phi(Q)$.
Then

$$
\begin{aligned}
F(\Phi(P), \bar{\Phi}(Q)) & \geqslant\langle\widetilde{u} \mid \stackrel{\rightharpoonup}{v}\rangle \\
& =\langle u \mid \underbrace{A^{+} A}_{\mathbb{\Perp}} \otimes \mathbb{\|}_{u^{\prime}} v\rangle \\
& =\langle u \mid v\rangle=F(P, Q) .
\end{aligned}
$$

Cor: Let $\Phi \in C(V)$ and $P \in P_{\Delta>}(V)$.
For $|u\rangle \in V \otimes \omega$ and $Q \in \operatorname{Pos}(V \otimes U)$
satistying

$$
P=\operatorname{Tr}_{w}|u\rangle\langle u|=\operatorname{Tr}_{u} Q
$$

we have

$$
F\left(Q, \Phi \otimes \mathbb{1}_{L(u)}(Q)\right) \geqslant F\left(|u\rangle\langle u|, \Phi \otimes \mathbb{1}_{L(w)}|u\rangle\langle u|\right)
$$

Prest: There exisb $\Psi \in C(w, u)$ sven thot

$$
\mathbb{I}_{L(v)} \otimes \Psi(\quad|u\rangle\langle u|)=Q . \quad(\text { Propoution })
$$

By the meotonicty of jidelity

$$
\begin{align*}
F(|u\rangle\langle u|, & \left.\Phi \otimes \mathbb{1}_{L(w)}(|u\rangle\langle u|)\right) \\
& \leqslant F\left(\mathbb{\|}_{L(v)} \otimes \Psi(|u\rangle\langle u|), \Phi \otimes \Psi(|u\rangle\langle u|)\right) \\
& =F\left(\mathbb{Q}, \Phi \otimes \mathbb{1}_{L(u)} Q\right)
\end{align*}
$$

As a consepuen

$$
\begin{array}{r}
F(\Phi, P)=\min _{Q}\left\{F\left(Q, \Phi \otimes \|_{L(u)}(Q)\right):\right. \\
\\
\left.\operatorname{Tr}_{u} Q=P\right]
\end{array}
$$

Writing

$$
\Phi(A)=\sum_{a} A A_{a} A A_{a}^{+}
$$

we have

$$
\begin{aligned}
& F(\bar{\Phi}, P)=F\left(|u\rangle\langle u|, \Phi \otimes \mathbb{H}_{L(v)}(|u\rangle\langle u|)\right) \\
& =\sqrt{\left\langle u, \Phi \otimes \mathbb{I}_{L(v)}(|u\rangle\langle u|) u\right\rangle} \\
& =\sqrt{\sum_{a}\left\langle u, A_{a} \otimes \|_{v} \mid u\right\rangle\left\langle u \mid A_{a}^{+} \otimes \mathbb{1}_{v} u\right\rangle} \\
& =\sqrt{\sum_{a}\left|\left\langle u \mid A_{a} \otimes \mathbb{L} v u\right\rangle\right|^{2}} \\
& \left\langle\operatorname{vec} \sqrt{p}, A a \otimes \mathbb{1}_{v} \operatorname{vec} \sqrt{p}\right\rangle \\
& =\left\langle\sqrt{P}, A_{a} \sqrt{P}\right\rangle \text { Exeriu } \\
& =\sqrt{\sum_{a}\left|\left\langle P, A_{a}\right\rangle\right|^{2}} .
\end{aligned}
$$

