Quantum STATES Qpeobless on sets tet I and T be pruite sets. I) Direct product $I \times T = \int (a, b) : a \in \mathbb{Z}, b \in \mathbb{T}]$ 2) Disjoint under $\Sigma \sqcup T$ construct eq a \in \mathbb{Z} and $b \in \mathbb{T}$. More formells $\Sigma \sqcup T = \int (a, 0), (b, 1) : a \in \mathbb{Z}$ $b \in \mathbb{T}]$

3) Set of further $F(\Sigma, \Gamma) = \{f: \Sigma \rightarrow \Gamma\}$ A further $f: \Sigma \rightarrow \Gamma$ is called a bijentie if it is one-to-one and orto. In this care we write $\Sigma \cong \Gamma$.

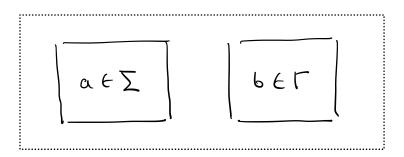
 $\underline{E} \times : \Sigma \cong \{0, 1, ..., | \Sigma | - 1\}$ where $|\Sigma|$ devotes the sile of the set.

Registes

A register is an abstraction et a physical system on which dota can be stored

Each register has associated to it a set I of clanded states:

Cricer the registers he can form the compound register:



The set of classical states of the compsund register is given by IXT.

Hilbert spaces

In question information theory we associate the Hilbert space $C \Sigma$ to a register with a set Σ et classical states. The Hilbert space $C \Sigma$ has basis given by $\Sigma LaY : a \in \Sigma S$. A vector $v \in C \Sigma$ is of the form $IvY = \Sigma \times a LaY$, $x_a \in C$.

Vector space structure 1) Addition: $u + v = \sum_{a \in \Sigma} p_a |a\rangle + \sum_{a \in \Sigma} d_a |a\rangle$ $= \sum_{a \in \Sigma} (p_a + d_a) |a\rangle$ $a \in \Sigma$ where $|u\rangle = \sum_{a \in \Sigma} p_a |a\rangle$. 2) Scoler multiplication:

$$XY = \sum X X_a |a\rangle,$$

a $E\Sigma$

The inner product on
$$\overline{Q\Sigma}$$
 is degreed
by
 $\langle u,v \rangle = \overline{\Sigma} \quad \overline{Pa} \times a$
 $a \in \Sigma$

Note that
1)
$$\langle u_1 xv + pw \rangle = x \langle u_1 v \rangle + p \langle u_1 w \rangle$$

2) $\langle u_1 v \rangle = \langle Y, u \rangle$
3) $\langle u_1 u \rangle \rangle = \langle Y, u \rangle$
3) $\langle u_1 u \rangle \rangle = 0$
if and only if $u = 0$.

if and only if
$$u = 0$$
.
In Dirac notation we write $\langle u | v \rangle$.
The standard basis $\{ |a \rangle : a \in \mathbb{Z} \}$ is
ofthonormal:
 $(a | b \rangle = Sab = \{ | a = b \}$

of thone mal:

$$(a \mid b) = Sab = \begin{bmatrix} 1 & a = b \\ 0 & otherwise. \end{bmatrix}$$

The norm of
$$v \in \mathbb{C}\Sigma$$
 is degreed by
 $\|v\| = |\sqrt{\langle v, v \rangle}$.

Lem: Norm determines the inner product: $\langle u, v \rangle = \frac{\|u+v\|^2 - \|u-v\|^2 + \|u+iv\|^2}{4} = \|u-iv\|^2 i$

In general, a Hilbert space is a
vector space
$$V$$
 together with a
inner product
 $\zeta_{-,-}^{-}$: $V \times V \rightarrow \mathbb{C}$.

bet
$$S = \{v_a : a \in \Sigma\} C Y$$
.
We say S is linearly independent
if $\exists \{z_a \in C\}_{a \in \Sigma}$ not all zero
such that

$$\Sigma da Va = 0$$
.
at Σ

The subspane

$$Span(S) = \{ \sum_{\alpha \in \Sigma} X_{\alpha} \vee_{\alpha} : X_{\alpha} \in \mathbb{C} \}$$

is called the span of S.

The dimension of V is defined by
dim
$$V = 1\Sigma I$$
,
The set S is called orthogoal if
 $(Va, Vb) = 0$ $\forall a \neq b$
and orthonormal if
 $(Va, Vb) = Sab = \begin{bmatrix} 1 & a=b\\ 0 & otherwise. \end{bmatrix}$
We can identify $\Sigma \cong [0, 1, ..., 1\Sigma I - 1]$.
A been $\{V_i \mid i = 0, 1, ..., 1\Sigma I - 1\}$ can be
convuted to an orthonormal basis
by using the Gram - Schmidt procedure:
 $\overline{V}_0 = \frac{1}{|V_0|} V_0$

$$\overline{\vee}_{\circ} = \frac{1}{1 \vee 1} \vee_{\circ}$$

$$\overline{\nabla_{k}} = \frac{\nabla_{k}}{W} - \sum_{i=0}^{k-i} \langle \overline{\nabla_{i}}, \nabla_{k} \rangle \overline{\nabla_{i}}$$

$$\frac{\nabla_{k}}{W} - \sum_{i=0}^{k-i} \langle \overline{\nabla_{i}}, \nabla_{k} \rangle \overline{\nabla_{i}} W$$

where $o \leq k \leq |\Sigma| - 1$.

The set
$$\{\overline{Y}_i\}$$
 is althonormal:
 $\langle \overline{Y}_i, \overline{Y}_j \rangle = S_{ij}$.
Hwiskerity two.
Conchy-Schwarz inequality
 $|\langle \overline{Y}_i, \overline{Y} \rangle| \leq UuUUVV$ $\forall \overline{Y}_i, \overline{V} \in V$
with equality if ad only if $u en v$ linearly
dyendent.

Proof in the Appendix.

Linear operates A linear operter (map) A: V - W is a function such that $A(\alpha \vee + pu) = \alpha A \vee + p A u$ We will write L(V, W) for the set of linear operator. L(V,W) is a verter spare : 1) A+B D the lineer operter depliked by (A+B)(v) = Av+Bv2) XA is defined by $(\alpha A)(\nu) = \alpha A(\nu),$ Ex: The reve operator \mathbb{O} : $\vee \rightarrow \vee$ $\mathbb{O}(\gamma) = 0$ $\forall \gamma \in \mathcal{V}$ The identity operator $\underline{1}: \vee \longrightarrow \vee$

 $\mathcal{I}(\mathcal{V}) = \mathcal{V} \qquad \forall \mathcal{V} \in \mathcal{V}$

Let
$$\{v_a : a \in \Sigma\}$$
 and $\{w_b : b \in \Gamma\}$
be attonernal born for V and W .
A linear operator $A: V \rightarrow W$ is
iniquely specified by
 $Av_b = \sum_{a \in \Gamma} \langle w_a, Av_b \rangle w_a$.
The coefficients can be assembled
into a junction
 $A: T \times \Sigma \rightarrow C$
 $A(a, b) = \langle w_a, Av_b \rangle$.

We call this juplies the notrix representation. In motion representation the composition of $A: \Lambda_X \Sigma \rightarrow C$ and $B: \Gamma \times \Lambda \rightarrow C$ is given by

BA: T× I --- C

 $BA(a,b) = \sum B(a,c) A(c,b)$.

We can cannot
$$A: T \times \Sigma \longrightarrow C$$
 to
on ordinary notrix by charring
 $\Sigma \cong \{0, 1, \dots, |\Sigma| - 1\}$
 $T \equiv \{0, 1, \dots, |T| - 1\}$.

- Then composition of epecter is given by the unual notrix nultiplication.
- The stenderd bours of L(V,W) const of [Eab: aEZ, bEF] deputed by

$$E_{ab}(c_{1d}) = S_{(a_{1}b)}, (c_{1d})$$

$$= \int_{0}^{1} (c_{1d}) = (a_{1b})$$
otherwise,

As an ordinary matrix

$$E_{ij} = \begin{pmatrix} 0 & 0 \\ -1 & --- \\ 0 & 0 \end{pmatrix}$$

Lineer isometry A lineer operter A: V-1W is called a linear isometry if

$$\mathbb{U} \land \mathsf{V} \ \mathsf{U} = \mathbb{U} \lor \mathbb{U} \qquad \forall \mathsf{V} \in \mathsf{V}.$$

2)
$$C^{\Sigma} = F(\Sigma, C) D a Hilbert$$

space with bars given by the
functions
 $e_a: \Sigma \rightarrow C$
 $e_a(b) = S_{ab} = \begin{bmatrix} 1 & a=b \\ 0 & otherwise \end{bmatrix}$

The linear specator

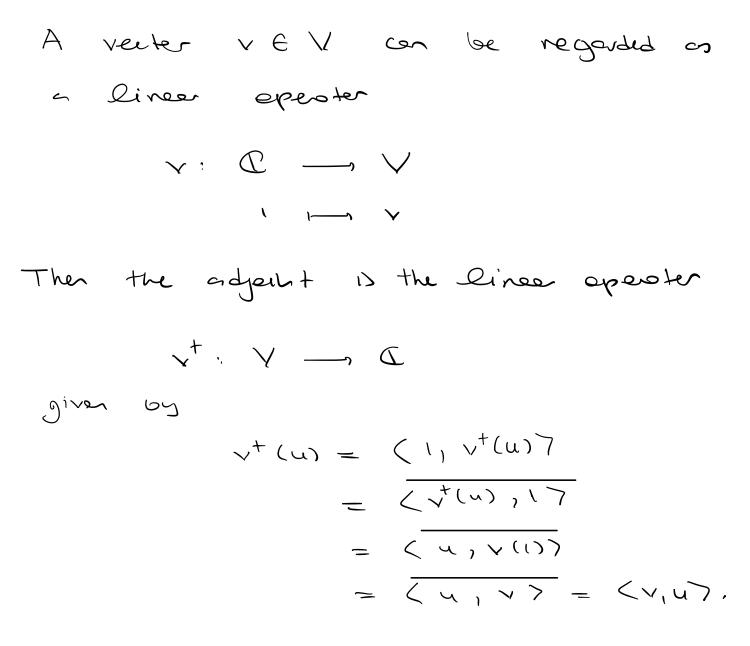
$$C^{\Sigma} \longrightarrow C^{\Sigma}$$

 $E_{\alpha} \longrightarrow 1a^{\gamma}$
gives an nonerphyse $C^{\Sigma} \equiv C^{\Sigma}$.
3) Matrix representation gives an
nonerphyse:
 $L(C^{\Sigma}, C^{\Gamma}) \equiv C^{\Gamma \times \Sigma}$.

Pro: For
$$A \in L(V, W)$$
 the following one
equivalent.
1) A is a cineer isometry.
2) $(Av, Au) = (V, u) + v, u \in V.$
Proof: $(1 \Rightarrow 2)$ This follows from the
fact that the inner product is determined
from the norm.
 $(2 \Rightarrow 1)$ Take $u = v.$
HW: Write a none detailed proof

The adjust of a linear openator

$$A: V \rightarrow W$$
 is the linear openator
 $A^{\dagger}: W \rightarrow V$
uniquely specified by the equation
 $(W, AV) = \langle A^{\dagger}W, V \rangle$
for all $v \in V$, $w \in W$.
Pro: The motion representation of A^{\dagger}
is given by $A^{\dagger}(a_{1}b) = \overline{A(b_{1}a)}$.
Proof: We have
 $A^{\dagger}(a_{1}b) = (Wa, A^{\dagger}v_{b})^{\dagger}$
 $= \langle \overline{A^{\dagger}v_{b}}, Wa \rangle$
 $= \langle \overline{A^{\dagger}v_{b}}, Wa \rangle$
 $= \overline{A(b_{1}a)}$. Equation
Notation: Transpose of a notion
 $A^{\dagger}(a_{1}b) = A(b_{1}a)$.
Notation: Transpose of a notion
 $\overline{A^{\dagger}(a_{1}b)} = \overline{A(b_{1}a)}$.
At $(a_{1}b) = \overline{A(b_{1}a)}$.
 $A^{\dagger}(a_{1}b) = \overline{A(b_{1}a)}$.
At $(a_{1}b) = \overline{A(b_{1}a)}$.
 $A^{\dagger}(a_{1}b) = \overline{A(b_{1}a)}$.
 $A^{\dagger}(a_{1}b) = \overline{A(b_{1}a)}$.



Urin	y this	contration	ne	degne
a	linee	op-eotor:		

$$w v^{\dagger} : V \longrightarrow W$$

The means that the comparition of y^{+} . $V \rightarrow 0$ and $w: 0 \rightarrow W$: $wv^{+}(u) = w(\langle x, u \rangle)$ $= \langle x, u \rangle w$.

In Dirac notation
$$v^{\dagger}$$
 is denoted by
a bra $\langle v \rangle$.
Then
 $\langle v \rangle (1 u \rangle) = \langle v \rangle u \rangle$.
Inner product in
Dirac notation.

The operator with is written as 1w7 < v1 = 1w7 < v1w7 1w7 < v1 (1w7) = 1w7 < v1w7= (v1w7 1w7)

For $A: V \longrightarrow W$ we con write $A = \sum_{a,b} A(a,b) |a\rangle \langle b\rangle .$

$$\underline{P_{M}}: (A^{\dagger})^{\dagger} = A$$

$$(BA)^{\dagger} = A^{\dagger}B^{\dagger},$$

$$HW: Prove this.$$

$$Pro: A is an isometry if and onlyif $A^{\dagger}A = \prod_{V}$.$$

Proof: We have

$$\angle A_{Y}, A_{y} = \angle Y_{y}$$

if and only if
 $\angle A^{+}A_{Y}, u_{Y} = \angle Y_{y}$
which implaies that $A^{+}A = \coprod Y$. En

When
$$V = W$$
 we will write $U(V)$
for $U(V,V)$.

.

$$U(V)$$
 has the structure of a group:
1) A, BE $U(V)$ then ABE $U(V)$
2) ILV is the identity element:
 $A \parallel_V = \parallel_V A = A$, $\forall A$

3) Every AGU(V) ver an inverse:

$$A^{t}A = A^{t}A = \underline{\mathbb{1}}_{V}$$

Direct sun
The direct sum of CA and CT
is the defined as the vector space

$$CA \oplus CT = CEAUT$$
.
A vector in $CA \oplus CT$ can be uniquely
expressed as
 $v = \sum K_a |a\rangle + \sum p_b |b\rangle$.
For a subspace $W \in V$ we write
 $W^{\perp} = \{v \in V : \langle w, v \rangle = 0, \forall w \in W\}$
Pro: $V \equiv W \oplus W^{\perp}$.
Proof: $Chose = an octoversel born$
 $\{w_a : a \in A\}$ for $W = ad extends$
it to an octorered basis
 $[w_a : a \in A] \sqcup \{u_b : b \in T\}$
for $V \equiv C \equiv where \equiv A \sqcup T$.
 $Qreet: (W^{\perp})^{\perp} = W$.

The kend of
$$A$$
 D defined by
ker $A = \{v \in V : Av = D\}$
and the image of A D defined by
in $A = \{Av \in W : v \in V\}$.
We have
dim $V = \dim(im A) + \dim(ker A)$
The dimension of the image D
colled the rank of A :
rank $(A) = \dim(im A)$.
Pro: $kr = A^{+} = (im A)^{+}$

Preat: For w EW we have

$$A^{\dagger}w = 0 \quad \langle = 7 \quad \langle A^{\dagger}w, v \rangle = 0 \quad \forall v \in V$$

 $\langle = 7 \quad \langle w, Av \gamma = 0 \quad \forall v \in V$
 $\langle = 7 \quad \omega \in (im A)^{\perp}$.

Ger: in
$$A = in A A^{\dagger}$$
.
Preet: we will show that
ker $A^{\dagger} = kr A A^{\dagger}$.
Then the result follows from the Proposition:
 $im A = (ker A^{\dagger})^{\dagger} = (kr A A^{\dagger})^{\dagger} = in A A^{\dagger}$.

We have

$$\ker A^{\dagger} \subset \ker A A^{\dagger}$$
.
 $4 A^{\dagger} w = 0$ then $A A^{\dagger} w = 0$.
For the converse let $w \in \ker A A^{\dagger}$,
that is, $A A^{\dagger} w = 0$.
This implies that
 $A^{\dagger} \cup \in \ker A = (\operatorname{in} A^{\dagger})^{\perp}$.

Therefore $\langle A^{\dagger}w, v \rangle = 0 \quad \forall v \in in A^{\dagger}.$ Thus $A^{\dagger}w = 0 \quad \text{and} \quad w \in \ker A^{\dagger}.$ Trace

We will write L(V) for L(V,V). Trace is the linear operator Tr: L(V) - T miquely determined by Tr((u)(V)) = (v)(u).

Pro: In notrix representation $Tr(A) = \sum_{a \in \Sigma} A(a, a)$

 $\frac{P_{100}f}{T_{r}(A)} = T_{r}\left(\sum_{a,b} A(a_{1}b) | a_{7}<b1\right)$ $= \sum_{a,b} A(a_{6}b) T_{r}(|a_{7}<b1)$ $= \sum_{a,b} A(a_{1}b) < b1a^{7}$ $= \sum_{a,b} A(a_{1}b) < b1a^{7}$ $= \sum_{a} A(a_{2}a) . \qquad \square$ $Gor: T_{r}(AB) = T_{r}(BA).$ Huis Prove this

Pro: The adjoint of
$$Tr$$
 is the linear operator $\underline{\Pi}_{V}$: $\underline{\Box}_{-}$, $\underline{L}(V)$.

$$\frac{P_{noopt}}{T_r^+(L)} = \sum_{a_1b} \langle la \rangle \langle bl \rangle, T_r^+(l) \rangle la \rangle \langle bl \rangle$$
$$= \sum_{a_1b} \langle T_r(la \rangle \langle bl \rangle), l \rangle la \rangle \langle bl \rangle$$
$$= \sum_{a_1b} \langle a \rangle \langle a \rangle$$
$$= L_V$$

Clames of operators
L(V)
I
Normal operators
Nor (V) =
$$\{A \in L(V) : A^{\dagger}A = AA^{\dagger}\}$$

Unitary operators
Hermitian operators
Hermitian operators
Her (V) = $\{A \in L(V) : A = A^{\dagger}\}$
I
Positile operators
Positile operators
Positile operators
Projection op

A nonzeo vector
$$v \in V$$
 is called an
eigenvector corresponding to $\lambda \in \mathbb{C}$
if $A v = \lambda v$.
The number λ is called an eigenvalue
Eigenspace corresponding to λ .
 $V_{\lambda} = \{v \in V : Av = \lambda v\} \cup \{o\}$.
Eigenvalues are the roots of the
characteristic polynomial
 $det(A - IV)$.

Note that there is at least are nerzes solution.

Spectral decomposition theorem
Let
$$A \in Nor(CIZ)$$
.
Then there exists an ertherernel
bows $\sum |V_a\rangle : a \in Z$ such that
 $A = \sum_{a \in Z} \lambda_a |V_a\rangle \langle V_a|$.

Proof in the Appendix.

A motivice
$$D: \Sigma \times \Sigma - i C$$
 is called
disgood if $D(a,b) = 0$ when $a \neq b$.
Cor: Y AE Nor($C\Sigma$) then there
exists $U \in U(C\Sigma)$ such that
 UAU^{+} is diagonal.
Proof: By the spectral theorem:
 $A = \sum \lambda_{a} |v_{a} \rangle \langle v_{a}| U$
 $A = \sum \lambda_{a} |v_{a} \rangle \langle v_{a}| U^{+}$
 $U|v_{a} \rangle = |a\rangle.$
Then
 $UAU^{+} = \sum \lambda_{a} U|v_{a} \rangle \langle v_{a}| U^{+}$
 $= \sum \lambda_{a} |a \rangle \langle a|$

We say A is miterily dicyonalizable if the exists UEU(CI) such that UAUT D diagent.

9

Characterisations of positive optotes
The following are equivalent.
1)
$$\langle V_1 PV \rangle \in R_{go} \quad \forall v \in V.$$

2) $P \in Hern(V)$ and eigenvalues of
 P belong to R_{go} .
3) $P = A^{\dagger}A$ for some $A \in L(V)$.
4) $\langle Q, P \rangle \in R_{go} \quad \forall Q \in P_{SO}(V).$
Poot: $(1=72)$ by spectral deconvarition:
 $P = \sum \lambda_{Q} |V_{Q}\rangle \langle V_{Q}|$
 $\alpha \in \Sigma$
We have $\lambda_{Q} = \langle V_{Q}, P V_{Q} \rangle \in R_{go}.$
 P is horneitien only its eigenvalues
are real.
 $(2 = 32)$ Let $A = \sum \sqrt{\lambda_{Q}} |V_{Q}\rangle \langle V_{Q}|$.
Then $P = A^{\dagger}A.$
 $(3 = 34)$ We can write $Q = B^{\dagger}B.$
Then $\langle Q, P \rangle = Tr(Q P)$
 $= Tr(BA^{\dagger}(BA^{\dagger}A))$
 $= Tr(BA^{\dagger}(BA^{\dagger}) \in R_{go}$
 $(4 = 31)$ Take $Q = |V \rangle \langle V|.$

-

Polar decomposition theorem:
For
$$A \in L(V, W)$$
 we have
 $A = U \sqrt{A^+A}$ (left polar
decomposition)
for some $U \in U(V, W)$.
Proof M the Appendix. (There is also right polar
decomposition $A = VAA^+ U$.
Car (Singular value theorem):
Let $A \in L(V, W)$ be a nerved linear appearer
such that rank $(A) = r$.
Then there exists arthonormal vets
 $[V_a: a \in A \] C V$ and
 $[W_a: a \in A \] C W$ such that
 $A = \sum_{a \in A} S_a Wa \forall Cval$
where $|A| = r$ and $S_a \in R_{\forall 0}$.
Proof: Since $A^+A \in Por(V)$, by the spectral
decomposition we have
 $A^+A = \sum_{a \in A} \lambda_a Wa \forall Cval$.
where $\lambda_a \in R_{\forall 0}$.
Then $A = U \sqrt{A^+A} = \sum_{a \in A} \sqrt{\lambda_a} U Va \forall Cval$
include: $U \otimes V$

Quantum startes

We have seen that a register comes with a set Σ of classical states. A probabilitiestic state on the register is a probability distribution, i.e., a function $p: \Sigma - R_{>0}$ such that $\Sigma = p(a) = 1$. We will write $Dist(\Sigma)$ for the set of

probability distributions on Z.

- In quentur injernation theory states of registers are represented by quentur states.
- A quertur state is a density operator of the form $e \in Den(\overline{C}\overline{\Sigma})$. By spectral decomposition

$$p = \sum_{a \in \Sigma} p_a |v_a\rangle \langle v_a |$$

where p_a , o and $\sum_{a} p_a = 1$.

That is $p: \Sigma \to R_{>0}$ depined by $p(a) = p_a$ is a probability distribution.

A quantum state is said to be pure
if
$$e^2 = e$$
.

HW: Prove this.

An ensemble of states is a junto 1: T -> Pos(CZ) satisfying Tr (I 2(a)) = 1. a E T Note that $p: \Gamma \longrightarrow \mathbb{R}_{\geq 0}$ a in Tr () (a)) is a probability distribution. e E Der (CI) we have Giver $C = \sum_{a \in \Sigma} \lambda_a |v_a\rangle \langle v_a|.$ The 7: I - Pos(CI) depined by g(a) = Da lvag (val i) an ensemble et pure states. Pro: Der (CI) coincides with the set of ensembles of pure states.

Tensor product
The tensor product of
$$(\Sigma \ and \ C \Gamma)$$

is the Hilbert space
 $G\Sigma \otimes (\Gamma = C[\Sigma \times \Gamma])$.
A vector in the tensor product
is represented by $\nabla \otimes U$:
 $\nabla \otimes U = \Sigma \propto_a |a\rangle \otimes \sum_b p_b |b\rangle$
 $= \sum_{a,b} \propto_a p_b |a\rangle \otimes |b\rangle$
We also write
 $|a\rangle |b\rangle \approx |ab\rangle$.
The inner product is given by

 $\langle v \otimes u, v' \otimes u' \rangle = \langle v, v' \rangle \langle u, u' \rangle.$

The Hilbert space anociated to a compound register D $C \Sigma \otimes C T$. Hence a quantum state for such a register D a dervity operator $P \in Der(C \Sigma \otimes C T)$. Given $A: \mathbb{C}\Sigma - \mathbb{C}\Sigma'$ and $B: \mathbb{C}\Gamma - \mathbb{C}\Gamma'$ the tensor product $A \otimes B$ is degreed by $A \otimes B: \mathbb{C}\Sigma \otimes \mathbb{C}\Gamma - \mathbb{C}\Sigma' \otimes \mathbb{C}\Gamma'$ $A \otimes B (\vee \otimes u) = A \vee \otimes B u$. $Pro: (A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$.

 $Tr(A\otimes B) = Tr(A) Tr(B)$

In Dira notation we write $|v'\rangle\langle v| \otimes |u'\rangle\langle u| = |v'\rangle\otimes |u'\rangle\langle v|\otimes\langle u|$ $= |v'\rangle|u'\rangle\langle v|\langle u|$ $= |v'u'\rangle\langle vu|.$

Partial trave
Give
$$V \otimes W$$
 the partial trace Tr_W
is the Qinear operator
 $Tr_W : L(V \otimes W) \rightarrow L(V)$
depined by
 $Tr_W = I_V \otimes Tr$.
We have
 $Tr_V (A \otimes B) = A \otimes Tr(B)$.
Partial trave
 $Tr_V : L(V \otimes W) \rightarrow L(W)$
is binuilarly degreed.
There a compaund register with a
question state
 $E \in Den (V \otimes W)$
the state associated to each register
is given by
 $e' = Tr_W e$ and $e' = Tr_V e$.

Operator - vector correspondence
There is an isomorphism (eq. Hilbert spece)
vec:
$$L(CZ, CT) \longrightarrow CT \otimes CZ$$

degived by
vec (107661) = 107167.
We have
(107601, 107601) = Tr(107601 107601)
= (a107 (d16)
= (a107 (d16)
= (a107, 1027).
For orbitrony vectors we have
vec (1v)(u1) = $\sum_{a,b} v_a \overline{u}_b vec (107661)$
= $\sum_{a,b} v_a \overline{u}_b vec (107661)$

 $= \langle v \rangle \langle \overline{v} \rangle .$

$$\underline{Lem}: (A_0 \otimes A_1) \operatorname{vec}(B) = \operatorname{vec}(A_0 B A_1)$$

$$(A \otimes \otimes A_1)$$
 ver $(B) = A \otimes |a\rangle A_1 |b\rangle$
= $A \otimes |a\rangle (\langle b| A_1^+)^+$
= $Ver(A_0|a\rangle \langle b| A_1^-)$. [2]

$$\text{dem}: Tr_{V}(\text{vec}(A) \text{vec}(B)^{\dagger}) = AB^{\dagger}.$$

Prot: By anti-linearity it approve to
prove this for
$$B = 1a7601$$
.
We have

$$T_{r_{v}}(ver(A) ver(b)^{\dagger}) = T_{r_{v}}(ver(A) (|ab\rangle)^{\dagger})$$
$$= T_{r_{v}}(ver(A) (ab))$$

$$= \operatorname{Tr}_{V} (\operatorname{vec}(A) (abl))$$

$$= \sum_{c,d} A(c,d) \operatorname{Tr}_{V} (\operatorname{lcd} (abl))$$

$$= \sum_{c,d} A(c,d) \operatorname{Tr}_{V} (\operatorname{lcd} (abl))$$

$$= \sum_{c_1, d} A(c_1, d) | c \rangle \langle d| | b \rangle \langle d|$$
$$= A B^{\dagger}$$

HW: $T_r (vec(A) vec(b)^{\dagger}) = A^{\top} B.$

Schwidt deconposition
Let
$$|V\rangle \in VoW$$
 be a nonzero verter.
Then there exists orthonormal ress
 $[V_a: a \in A \] \subset V$ and
 $[W_a: a \in A \] \subset W$ such that
 $|U\rangle = \sum s_a |V_a \cup a \rangle$
 $a \in A$
where $s_a \in R_{>0}$ and $\sum s_a^2 = 1$.
 $a \in A$
where $s_a \in R_{>0}$ and $\sum s_a^2 = 1$.
 $a \in A$
 $P_{noot}: b \in A \in L(W, V)$ be such
that
 $Vec(A) = |U\rangle$.
By singular value decompantion
 $A = \sum s_a |V_a| \leq wal$.
 $A = \sum s_a |V_a| \leq wal$.
 We have
 $1 = Tr(|U| \leq wal)$
 $= \sum s_a^2$
 We have

Purification
Let
$$P \in Por(V)$$
.
A vector $Iurre \in V \otimes W$ is said to
be a purification of P if
 $P = Tr_{W}(Iurrel)$.

Lem: The following are equivalet.
1) There exists a prigicative lus of P.
2) Thue exists
$$A \in L(W, V)$$
 such that
 $P = A A^{t}$.

Proof: Since vec is an isomorphism
ony vector can be written as
$$|u\rangle = vec (A)$$
.

We have

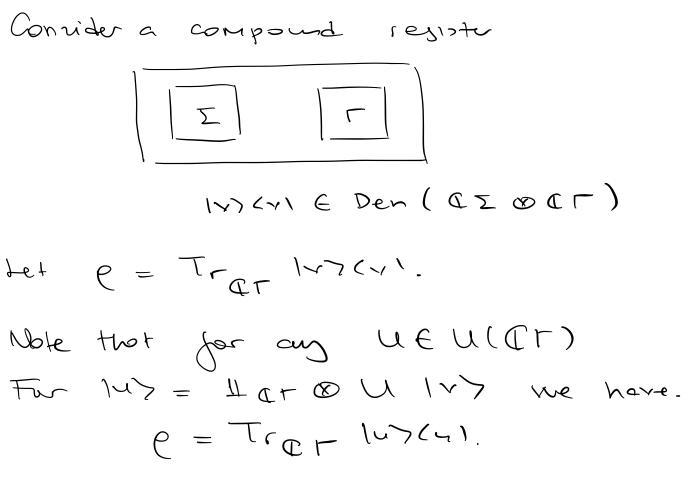
$$T_{r_{W}}(|u\rangle\langle u|) = T_{r_{W}}(ver(A) ver(A)^{\dagger})$$

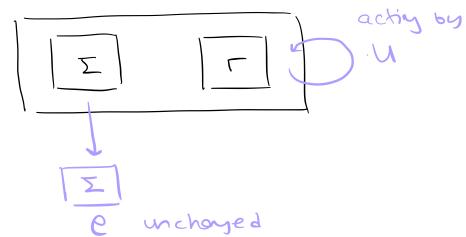
$$(Len) = A A^{\dagger}.$$

Proof: Purpliche exists if and and if
the exists
$$A \in L(W,V)$$
 such that
 $P = A A^{+}$. (Lean)
This implies that
rach $(P) = rach (A)$ (Car.)
and therefore rach $P \leq din W$.
Conversels, by spectral decomposition
 $P = \sum \lambda_{a} (Va) (Va)$.
 $a \in \Sigma \in Ryo$
Sime din W & rach P there exists
an orthonormal set of these exists
an orthonormal set of these isols
 $A = \sum V \lambda_{a} (Va) (Va)$
 $A = \sum V \lambda_{a} (Va) (Va)$
 $a \in \Sigma$
Jives $A A^{+} = P$.
Unitary equivalent of purpletion
tet u, v $\in V \otimes W$ be such that
 $Tr_{w} (u) \leq u = Tr_{w} (v) \leq v$.
Then these exists $U \in U(W)$ such
that $|v\rangle = \|v \otimes U | u\rangle$.

Proof: let A and B be such that

$$|u\rangle = vec(A)$$
 and $|v\rangle = vec(B)$.
We have
 $AA^{\dagger} = BB^{\dagger}$.
By singular value decomparishen
 $A = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $B = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $B = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $B = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $B = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $B = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $B = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $B = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $B = \sum \sqrt{\lambda_a} |v_a\rangle < wall
 $a \in A$
 $a = 1 \forall \lambda$
 $a = 1 \Rightarrow \lambda$
 $a = 1 \forall \lambda$
 $a = 1 \forall \lambda$
 $a = 1 \forall \lambda$
 $a = 1 \Rightarrow \lambda$$$$$$$$$$





The theorem implies the converse: $4 \quad lus \in G \Sigma \otimes G \Gamma$ such that $e = Tr_{G\Gamma} \quad lus(u)$ the $\exists U \in U(G\Gamma)$ such that $lus = \prod_{G T} \otimes U \quad lus).$

Fidelity
For AEL(V, W) the trace norm 5 degrees
by UAU, = Tr
$$\sqrt{A^{+}A}$$
. (Somethow
Pro: For AEL(V) we have
MAU, = mox $\frac{1}{2}ICU, A7I: UEU(V)$.
Recet: By singule value decorposition:
 $A = \sum_{a} s_{a} Iwcr(v_{a})$.
The $I(U, A7I^{2} = ITr(U^{+}A)I)$
 $= \sum_{a} s_{a} I(v_{a}, U^{+}w_{a})I$
Carry-Schwere
 $\leq \sum_{a} s_{a} I(v_{a}, U^{+}w_{a})I$
 $= \sum_{a} s_{a}$
 $I = U A U$.
I AU, $= Tr(\sqrt{A^{+}A})$
 $= \sum_{a} s_{a}$
This movinum is achieved at U that schoping
 $A = U \sqrt{A^{+}A}$.

Cor : Let AEL(V) and U, , U₂ E U(W, V).
Then
$$U_1 U_1^+ A U_2 U_1 = U A U_1$$
.
Proof: Follow from
 $\langle U, U_1^+ A U_2 \rangle = Tr(U_1^+ U_1^+ A U_2)$
 $= Tr(U_2 U^+ U_1^+ A)$
 $= Tr(U_1 U U_2^+)^+ A)$
 $= (U_1 U U_2^+)^+ A)$
 $= (U_1 U U_2^+)^+ A)$
and the Proposition.
For P, Q E Pos(V) the fidelity between
P and Q > degreed by
 $F(P, Q) = U_1 \nabla P \nabla Q U_1$.
More explicitly, we have
 $F(P, Q) = Tr(\sqrt{\nabla Q P \nabla Q})$
In particular, for a unit vector $V \in V$.
 $F(P, 1V) \langle V \rangle = Tr \sqrt{V_1 V_2 (V_1)}$
 $= Tr(V \langle \nabla, P \vee \rangle (V_1))$
 $= V \langle \nabla, P \vee \rangle$.

 $F(|u\rangle\langle u|, |v\rangle\langle v|) = |\langle u, v\rangle|.$

Pro: The following properties hold. 1) F(P,2) >0 with equality if and any if PQ = D2) F(P, Q) E Tr(P) Tr(Q) with equality if and only if P and Q are linearly dependent. Proof: We have $F(P,Q) = \emptyset \quad \sqrt{P} \quad \sqrt{Q} \quad \emptyset, \quad \chi \\ O$ with equality if and any if VPVQ = D sine II. II, is a norm. The latter condition is equivalent to PQ = D. (Exercise: VP TQ = D <=> N IP JQN=0,) For the second property we have $\mathbb{N}\sqrt{P}\sqrt{Q}\mathbb{N}_{1}^{2} = |\langle U, VP\sqrt{Q} \rangle|^{2}$ = I < VPU, VQ71 Cauchy-Schwerz SUVPUNUVQN = Tr(UTFVPU) Tr(VQVQ) = $T_{r}(\gamma)$ $T_{r}(Q)$ Pard Q are Rihearly dependent, When

- i.e. xP + pQ = 0 when $x, p \in C$, we can directly show that
 - $\mathbb{W} \sqrt{P} \sqrt{Q} \mathbb{W}_{1} = T(P) T(Q).$

Cor: For
$$e, G \in Den(V)$$
 we have
 $O \leq F(e, G) \leq 1$

1)
$$F(e, o) = 0$$
 if and only if $e^{6} = 0$,
2) $F(e, o) = 1$ if and only if e^{-6} .
Pro: For $M \in L(V, w)$ we have
 $F(u r u^{\dagger}) u Q u^{\dagger}) = F(r, Q)$.
Proof: We have
 $U \sqrt{u r u^{\dagger}} \sqrt{u Q u^{\dagger} U} = U u \sqrt{r u} \sqrt{g u^{\dagger} U}$,
 $= U \sqrt{r} \sqrt{Q} U$, E
by spectral decayonities $P = \sum \lambda_{\alpha} 1 \sqrt{r} \sqrt{c} \sqrt{c}$
The $u r u^{\dagger} = \sum \lambda_{\alpha} u 1 \sqrt{r} \sqrt{c} \sqrt{c}$
The $u r u^{\dagger} = \sum \lambda_{\alpha} u 1 \sqrt{r} \sqrt{c} \sqrt{c}$
The $u r u^{\dagger} = \sum \sqrt{\lambda_{\alpha}} u 1 \sqrt{r} \sqrt{c} \sqrt{u}$
 $= U (\sum \sqrt{\lambda_{\alpha}} 1 \sqrt{r} \sqrt{c} \sqrt{u}) U^{\dagger}$
 $= U \sqrt{r} u^{\dagger}$.

When we have
$$P^{2} = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}$$

Similarly we have

$$\begin{pmatrix} 0 & B \\ 0 & D \end{pmatrix} = Q \vee$$

where $Q = (\sqrt{BB^{+}} D)$.

$$F(AA^{\dagger}, \& e^{\dagger}) = \iint \sqrt{AA^{\dagger}} \sqrt{ee^{\dagger}} \iint_{I}$$

$$= \iint \left(\begin{pmatrix} \sqrt{AA^{\dagger}} & 0 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} \sqrt{BE^{\dagger}} & 0 \\ 0 & 0 \end{pmatrix} \right)_{I}$$

$$= \iint P Q \iint_{I} \left(\begin{pmatrix} \sqrt{AA^{\dagger}} \sqrt{EE^{\dagger}} & 0 \\ 0 & 0 \end{pmatrix} \right)$$

$$= \iint U P Q \bigvee_{I}$$

$$= \iint (PU)^{\dagger} Q \vee \bigcup_{I}$$

$$= \iint (PU)^{\dagger} (Q \vee) \iint_{I}$$

$$= \iint \left(\begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \right)_{I}$$

$$= \iint \left(\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix} + \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \right)_{I}$$

$$= \iint \left(\begin{pmatrix} 0 & 0 \\ 0 & A^{\dagger} E \end{pmatrix} \right)_{I}$$

$$= \iint A^{\dagger} E \iint_{I}$$

$$\underbrace{Cor}: For u, v \in V \otimes W \quad we \quad hove$$

$$F(T_{r_{w}} | u \rangle \langle u |, T_{r_{w}} | v \rangle \langle v |) = \|Tr_{v} | v \rangle \langle u | \|_{1}$$

$$\underbrace{Pnoot}: bet A, B \in L(W, V) \quad be \quad neh$$

$$tot \quad vec(A) = n \quad ad \quad vec(B) = V.$$

$$We \quad have$$

$$F(Tr_{w} | u \rangle \langle u |, Tr_{w} | v \rangle \langle v |)$$

$$= F(A A^{+}, B B^{+})$$

$$= \|(A^{+} B)^{T}\|_{1}$$

$$= \|(A^{+} B)^{T}\|_{1}$$

$$= \|Tr_{v} | v \rangle \langle u | \|_{1}.$$

Proof of Uhlmann's theorem
By the mitay equivalence of puryhebbons:
now
$$\{1 < u, v > 1 : v \in V \otimes W, Tr_{W} | v > (v | = Q \}$$

 $= mox \{1 < u, (IL, \otimes U) w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U) w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U) w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U) w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U) w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U) w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U) w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox \{1 < u, (IL, \otimes U, w > 1 : U \in U(V)\}\}$
 $f = mox$

$$F(P,Q) = \max \{ | \langle u, u \rangle \otimes u \rangle | : u \in u(w) \}$$

$$= \max \{ | \langle u \rangle \otimes u^{\dagger}u, w \rangle | : u \in u(w) \}$$

$$= \max \{ | \langle w, u \rangle \otimes u^{\dagger}u \rangle | : u \in u(w) \}$$

$$= \max \{ | \langle w, u \rangle \otimes u \rangle | : u \in u(w) \}$$

$$= F(P,Q).$$

Alternatively this also follows from $N A N_{1} = N A^{+} N_{1}$.

Alterratile proof of Uhlman's theorem $F(P,Q) = \max \{ | \langle u, U \otimes U \rangle \} : U \in U(W) \}$ $|u\rangle = \sum V P \otimes \underline{\parallel}_{W} |aa\rangle$ $|v\rangle = \sum \sqrt{Q} \otimes \underline{H}_{W} |aa\rangle$ Ins punjies P J Exercice Ins punjies Q. J Exercice 1<u, 100 v>1 =12 (aal VP & IL W VQ & U 166)1 =15 (aal Vp VQ & M 166) = 1 S (aal VP VQ & S Ulcid) log(d) 166) = 1 I (al VPVQ Ulaib) 16) Tr (<a) VP VQ Ulain) 16), = |Tr (VP, 12 = Ularb) 162 (a1) | = ITr (VPVQUT) 1 $\leq Tr(|VPVa|)$ $|A| = VA^{+}A$ - WVPVall,

Taking
$$U^{T} = B^{+}$$
 where $B \in U(V)$ is such that
 $V \neq V = I = I \neq V = I B$ (polar decaposition)
we get
 $I = I Tr(V \neq V = U^{T}) = I Tr(V \neq V = B^{+}) = Tr(I \vee \forall = V = I)$
 $= Tr(I \vee \forall = V = I) = Tr(V \neq V = I)$
Thus now given the disecting. E
then is for $A \in L(V)$ and $U \in U(V)$ we have
 $I Tr(A U) I \leq Tr |A|$
with equality for $U = B^{+}$ where $A = IA | B$ is
the polar decomposition.
Proof: We have
 $I Tr(A U) I = I Tr(IA | B U) I$
 $I < V = I = I Tr(V = IA | B U) I$
 $I < V = I = I Tr(V = IA | B U) I$
 $I < V = I = Tr |A|$.
When $U = B^{+}$ the equality holds in
Carly-Schware integ.

Strong concounty of Gibblity
For
$$p_1q \in Dist(\Lambda)$$

 $F(\sum p_a P_a), \sum q_a Q_a)$
 $a \in \Lambda$
 $g \in \Lambda$
 $g \in \Lambda$
 $g \in \Lambda$
 $g \in \Lambda$
 $F(P_a, Q_a)$

Proof: By Whenen's theorem there exists purplication up and ve such that

al publication for $P = \sum_{a} P_{a} P_{a}$ and $Q = \sum_{a} q_{a} Q_{a}$.

Verjy Trwou luxcul = P, similarly for Q.

$$F(P,Q) > |\langle u| \rangle |$$

$$= \sum_{a} \sqrt{P_{a}q_{a}} |\langle u_{a}| \rangle \langle u_{a} \rangle |$$

$$= \sum_{a} \sqrt{P_{a}q_{a}} F(P_{a},Q_{a})$$

$$\exists$$

Appendix: Proofs of some theorems Proof of Caveby-Schwarz inequality If u = xv then the inequality holds. Assume uto and ZV, u) linearly in dependent. Gran-Schnidt gives an actuonend set $\{\vec{v}_1, \vec{v}_1\}$ where $\vec{v}_1 = \vee / \| \vee \|$. We an express \checkmark α $w = \langle \vec{v}_1, u \rangle \vec{v}_1 + \langle \vec{v}_2, u \rangle \vec{v}_2.$ Then (U, w) (V, v) is given by くえくず、いうず、、えくず、いうず、うくい、ッ $= \left(\sum_{i} \langle u_{i}, \overline{v}_{i} \rangle \langle \overline{v}_{i}, u \rangle \right) \langle \langle v_{i}, v \rangle$ $> < u, \widetilde{v}, \gamma < \widetilde{v}, , u > < v, v >$ $= \langle u, v \rangle \langle v, u \rangle \langle v, v \rangle$ $= 1 < \alpha, \sqrt{2}$ $\mathbb{N} \sim \mathbb{N}^{\mathbf{L}}$ $\overline{4}$

Proof of the spectral decomposition theorem
We will do induction on
$$|\Sigma|$$
.
For $|\Sigma| = 1$ we have
 $A = |X| |\Delta| |\Delta|$.
Assume $|\Sigma| > 2$.
Let X be an eigenvalue of A and
let TI be the projector and V_X :
 $TI = \sum_{b \in T} |V_b\rangle \langle V_b|$
when $\{|V_b\rangle: b \in T]$ is an althonormal
basis of V_X .
Define another projector
 $TI^{\perp} = II_V - TI$.
Observe that
 $TI TI^{\perp} = TI^{\perp} TI = 0$.
We have
 $A = I_V A I_V$
 $= (TI + TI^{\perp}) A (TI + TI^{\perp})$

 $= \Pi A \Pi + \Pi^{\dagger} A \Pi + \Pi A \Pi^{\dagger} + \Pi^{\dagger} A \Pi^{\dagger}$

Clain 1:
$$\Pi^{\perp} A \Pi = 0$$
:
 $\Pi^{\perp} A \Pi = \lambda \Pi^{\perp} \Pi = 0$
 $\Lambda = \lambda \Pi^{\perp} \Pi = 0$:
For $\psi \in V_{\lambda}$ is none
 $AA^{\dagger} \psi = A^{\dagger} A \psi = \lambda A^{\dagger} \psi$
 $The simbolic to claim 1 is constant
 $\Pi^{\perp} A^{\dagger} \Pi = 0$
 $\Pi^{\perp} A \Pi^{\perp} = 0$$

$$(\square^{\perp} \land \square^{\perp}) (\square^{\perp} \land^{\dagger} \square^{\perp})$$

Proof of polar decomposition The mitany U is contructed os follows: By spectral decomposition $\sqrt{A^{\dagger}A} = \sum \sqrt{\lambda_a} \sqrt{\lambda_a} \sqrt{\lambda_a}$ where $\sqrt{\lambda_a} \in \mathbb{R}_{>0}$

Let $|u_a\rangle = \frac{1}{\sqrt{\lambda_a}} A |v_a\rangle$ where $a \in \Lambda' = \{a \in \Lambda : \lambda_a \neq o\}$. The set $\{u_a : a \in \Lambda'\}$ and cen be extended to an oetlonemed bain $\{u_a : a \in \Lambda\}$. Let $M = \sum |u_a\rangle \langle v_a|$.

 $\alpha \in \Sigma$ (Omitted: Proving tot $A = U \sqrt{A^{+}A}$) \square