QUANTUM STATES
Opeothess an rel
Let I and T be finite set.

1) Direct product

$$
\Sigma \times \Gamma=\{(a, b): a \in \Sigma, b \in \Gamma\}
$$

2) Disjoint mien \sum LT constis es $a \in \Sigma$ and $b \in \Gamma$.
more jormells

$$
\sum \omega F=\{(a, 0),(b, 1): \quad a \in \Sigma \Sigma
$$

3) Set of gurtibs

$$
F(\Sigma, \Gamma)=\{f: \Sigma \rightarrow \Gamma\}
$$

A justin $f: \Sigma \rightarrow \Gamma$ is called a bijection if it is are-to-one and onto. In this core we wite $\Sigma \cong \Gamma$.

Ex: $\sum \sum\left\{0,1, \cdots, 1 \sum 1-1\right\}$ where $1 \Sigma \backslash$ devotes the rice of the set.

Register

A register is on abstraction of a phys rice system on which dote con be stored

Each register hon associated to it a set \sum of claruel states:

$$
a \in \Sigma
$$

Given two registers we can form the compound register:
\square
The set of classical state, of the compound register is given by $\Sigma x \Gamma$.

Hilbert spaces
In quantum ingormotila they we associate the Hilbert space \mathbb{I} to a register with a set \sum of classical staten. The tibet space II has basis given by

$$
\{\underbrace{|a\rangle}_{\text {Ret }}: a \in \Sigma\} \text {. }
$$

A vecter $v \in \mathbb{C} \Sigma$ is of the germ

$$
|v\rangle=\sum_{a \in \Sigma} \alpha_{a}|a\rangle, \quad \alpha_{a} \in \mathbb{C}
$$

Vecter spae strutue

1) Addition:

$$
\begin{aligned}
u+v & =\sum_{a \in \Sigma} P_{a}|a\rangle+\sum_{a \in \Sigma} \alpha_{a}|a\rangle \\
& =\sum_{a \in \Sigma}\left(p_{a}+\alpha_{a}\right)|a\rangle
\end{aligned}
$$

When $\quad|u\rangle=\frac{\sum}{a} \operatorname{Pa}|a\rangle$.
2) Scaler multipliotion:

$$
\alpha V=\sum_{a \in \Sigma} \alpha \alpha_{a}|a\rangle
$$

The inner product en $\mathbb{C} D$ degree by

$$
\langle u, v\rangle=\sum_{a \in \Sigma} \bar{p}_{a} \alpha_{a}
$$

Note that

1) $\langle u, \alpha v+p w\rangle=\alpha\langle u, v\rangle+p\langle u, w\rangle$
2) $\langle u, v\rangle=\overline{\langle y, u}\rangle$
3) $\langle u, u\rangle \geqslant 0$ and $\langle u, u\rangle=0$ if and only if $u=0$.

In Dirac notation we wite $\langle u l v\rangle$.
The stenderd basis $\{|a\rangle: a \in \Sigma\}$ is olthonermal:

$$
\langle a \mid b\rangle=\delta a b= \begin{cases}1 & a=b \\ 0 & \text { otherwise }\end{cases}
$$

The norm of $v \in \mathbb{C} \Sigma$ is defined by

$$
U \vee U=V \overline{\left\langle v_{1} v\right\rangle} .
$$

Lem: Norm determines the inner product:

$$
\langle u, v\rangle=\frac{u u+v u^{2}-u u-v u^{2}+u u+i v u^{2} i-u u-i v u_{i}^{2}}{4}
$$

un sererel, a tibet spae is a vecter space V together with an Inner product

$$
\langle-,-\rangle: V \times V \rightarrow \mathbb{C} .
$$

Let $S=\left\{Y_{a}: a \in \Sigma\right\} C V$.
We say S is linearly independent if $\exists\left\{\alpha_{a} \in \mathbb{C}\right\} a \in \Sigma$ not all zeno such trot

$$
\sum_{a \in \sum} \alpha_{a} V_{a}=0 .
$$

The subspane

$$
\operatorname{Span}(S)=\left\{\sum_{a \in \Sigma} \alpha_{a} V_{a}: \alpha_{a} \in \mathbb{C}\right\}
$$

i) called the span of S.

Y $S_{p a n}(S)=V$ then we say S is spanning.

A Vinery independent sporuhy set is celled a bows.

Every venter spar comes with a bars $\quad\{V a: a \in \Sigma\}$.

The dimension of V is deyrned by

$$
\operatorname{dim} V /=1 \Sigma 1
$$

The set S is celled orthojuel if

$$
\left\langle v_{a}, v_{b}\right\rangle=0 \quad \forall a \neq b
$$

and ofthonernel if

$$
\left\langle v_{a}, v_{b}\right\rangle=S_{a b}= \begin{cases}1 & a=b \\ 0 & \text { otherwise }\end{cases}
$$

We con identify $\Sigma \cong[0,1, \cdots,|\Sigma|-1]$.
A bens $\left\{V_{i}: i=0,1, \cdots,|\varepsilon|-1\right\rangle$ cen be convected to an ofthonermel bars by uning the Gram-Schmidt procedure:

$$
\begin{gathered}
\vec{V}_{0}=\frac{1}{\left\|v_{1}\right\|} V_{0} \\
\vec{v}_{k}=\frac{v_{k}-\sum_{i=0}^{k-1}\left\langle\vec{v}_{i}, v_{k}\right\rangle \vec{v}_{i}}{U V_{k+1}-\sum_{i=0}^{k-1}\left\langle v_{i}, v_{k}\right\rangle \vec{v}_{i} U}
\end{gathered}
$$

where $0 \leqslant k \leqslant|\Sigma|-1$.

The set $\left\{\vec{Y}_{i}\right\}$ is aethonermel:

$$
\left\langle\vec{r}_{i}, \vec{v}_{j}\right\rangle=\delta_{i j}
$$

HW: Verify this.
Cauchy - Schwarz inequality

$$
|\langle u, v\rangle| \leqslant U u U U \vee U \quad \forall u, w \in V
$$

with equality it and ends it u an v lineerbs Prot in the Appendix. dependent.

Linear aperten
A lineer opester (mop) $A: V \longrightarrow W$ is a funtien such thot

$$
A(\alpha v+p u)=\alpha A v+p A u .
$$

We will wite $L(V, W)$ for the set of lineer operotes.
$L(V, W)$ is a vecter spae:

1) $A+B \quad i$ the lineer oppoter defilied by

$$
(A+B)(v)=A v+B v
$$

2) αA is defined by

$$
(\alpha A)(V)=\alpha A(v)
$$

Ex: The ure opeoter

$$
\begin{aligned}
& D: V \rightarrow V \\
& \\
& D(v)=0 \quad \forall r \in V
\end{aligned}
$$

The identity opeotor

$$
\begin{array}{rl}
11: V & V \\
\Perp(V)=r & \forall \gamma \in V
\end{array}
$$

Let $\left\{v_{a}: a \in \Sigma\right\}$ and $\left\{w_{b}: b \in \Gamma\right\}$ be athonermal bens for V and W.
A lineer opeoter $A: V \rightarrow W$ is uniquely sperigied by

$$
A v_{b}=\sum_{a \in \Gamma}\left\langle w_{a}, A v_{b}\right\rangle w_{a}
$$

The coegricierb can be assembled into a gunition

$$
\begin{aligned}
& A: T_{\times} \sum \mathbb{C} \\
& A(a, b)=\left\langle w a, A v_{b}\right\rangle
\end{aligned}
$$

We call ths puntien the motrix represestation. In motrix reprenestatiten the comporitibes of $A: \Lambda \times I \longrightarrow \mathbb{C}$ and $B: \Gamma \times \lambda \longrightarrow \mathbb{C}$ is given by

$$
\begin{gathered}
B A: \Gamma \times \Sigma \rightarrow \mathbb{C} \\
B A(a, b)=\sum_{c \in N} B(a, c) A(c, b) .
\end{gathered}
$$

We cen canver $A: \Gamma \times \Sigma \rightarrow \mathbb{C}$ to on obdiney motrix by chering

$$
\begin{aligned}
& \Sigma \cong\{0,1, \cdots, 1 \Sigma 1-1\rangle \\
& \Gamma \equiv\{0,1, \cdots, 1 T 1-1\}
\end{aligned}
$$

Then comprition of epeoton is given by the unual rotrix multipliceties.

The stenderd baus of $L(V, W$) comsb of $\left\{E_{a b}: a \in \Sigma, b \in \Gamma\right]$ degined by

$$
\begin{aligned}
E_{a b}: & \Gamma \times \sum \longrightarrow \mathbb{C} \\
E_{a b}(c, d) & =S_{(a, b),(c, d)} \\
& =\left\{\begin{array}{cc}
1 & (c, d)=(a, b) \\
0 & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

As an ardinary motrix

$$
E_{i j}=\left(\begin{array}{c:c}
0 & 0 \\
- & 1 \\
0 & 0
\end{array}\right)
$$

Lineer isometry
A lineer opeoter $A: V \rightarrow W$ is called a lineer sorety if

$$
U A v U=U v U \quad \forall v \in V
$$

We will wite $U(V, W)$ jer the set of lineer ronetries.

We say V is isomepluc to W if there exisb a lineer sonetry $A: V \rightarrow W$ and $\operatorname{dim} V=\operatorname{din} W$.

Ex: 1) Cheoring a bous gives on isomerphism

$$
V \cong \mathbb{C} \Sigma
$$

2) $\mathbb{C}^{\Sigma}=F(\Sigma, G) \quad D$ a Hilbet spae with bars giver by the funtion

$$
\begin{aligned}
& e_{a}: \mathbb{L} \longrightarrow \mathbb{C} \\
& e_{a}(b)=S_{a b}= \begin{cases}1 & a=b \\
0 & \text { othewise. }\end{cases}
\end{aligned}
$$

The linear openater

$$
\begin{aligned}
& \mathbb{C}^{\Sigma} \longrightarrow \mathbb{L} \\
& e_{a} \longmapsto|a\rangle
\end{aligned}
$$

gives on somershom $\mathbb{C}^{\Sigma} \equiv \mathbb{C} \Sigma$.
3) Matrix representation giver an Domarphon:

$$
L\left(\mathbb{C}^{\Sigma}, \mathbb{C}^{\Gamma}\right) \equiv \mathbb{C}^{\Gamma \times \Sigma}
$$

Po: For $A \in L(V, w)$ the jollying ore equira lest.

1) A is a liver isometry.
2) $\langle A v, A u\rangle=\langle y, u\rangle \quad \forall v, u \in V$.

Proof: $(1 \Rightarrow 2)$ This follows from the fact that the inner product is detemuned from the norm.
$(2 \Rightarrow 1)$ Take $u=v$.
14
HW: Write a woe detailed pret for $(1 \Rightarrow 2)$.

The adjant of a lineer opertor $A: V \longrightarrow W$ is the lineer operotor

$$
A^{+}: W \rightarrow V
$$

uniquely specified by the equotion

$$
\langle w, A v\rangle=\left\langle A^{+} w, v\right\rangle
$$

for all $v \in V, \omega \in W$.
Pro: The motrix represe totibe ef A^{+} is given by $A^{+}(a, b)=\overline{A(b, a)}$.

Prof: We have

$$
\begin{aligned}
A^{+}(a, b) & =\left\langle w a_{a}, A^{+} v_{b}\right\rangle \\
& \left.=\overline{\left\langle A^{+} v_{b}, w a\right.}\right\rangle \\
& \left.=\overline{\left\langle v_{b}, A w_{a}\right.}\right\rangle \\
& =\overline{A(b, a)} .
\end{aligned}
$$

Notation: Tronspose of a motrix

$$
A^{\top}(a, b)=A(b, a)
$$

Conjugate ef a motrix

$$
\bar{A}(a, b)=\overline{A(a, b)}
$$

A^{+}is the conjugte tronspore of A.

A veeter $v \in V$ cen be regorded os a lineer epeoter

$$
\begin{aligned}
V: \mathbb{C} & \longrightarrow V \\
1 & \longmapsto V
\end{aligned}
$$

Then the adjent is the linee aperoter

$$
V^{+}: Y \longrightarrow \mathbb{C}
$$

given by

$$
\begin{aligned}
v^{+}(u) & =\left\langle\overline{\left\langle 1, v^{+}(u)\right\rangle}\right. \\
& =\overline{\left\langle v^{+}(u), 1\right\rangle} \\
& =\langle\overline{\langle u, v(1)\rangle} \\
& =\overline{\langle u, v\rangle}=\langle v, u\rangle
\end{aligned}
$$

Uhing this conturtion we can deynhe a linee opeotor:

$$
w v^{+}: V \longrightarrow W
$$

This mean that the comporition of $v^{+}: V \rightarrow \mathbb{C}$ and $w: \mathbb{C} \longrightarrow W$:

$$
\begin{aligned}
w v^{+}(u) & =w(\langle x, u\rangle) \\
& =\langle v, u\rangle w .
\end{aligned}
$$

In Diran notation $v^{+} i^{+}$devoted by a bra $\langle V|$.

Then

$$
\langle v|(|u\rangle)=\langle v \mid u\rangle
$$

Inner product in Diva notation.

The opeoter wit is written as $|w\rangle\langle y|$ and

$$
\begin{aligned}
|w\rangle\langle v|(|u\rangle) & =|w\rangle\langle v \mid w\rangle \\
& =\langle v \mid w\rangle|w\rangle .
\end{aligned}
$$

The bows apertors $E_{a b}$ will be devoted by $|a\rangle\langle b|$.

For $A: V \longrightarrow W$ we con unite

$$
A=\sum_{a, b} A(a, b) \quad|a\rangle\langle b|
$$

Pro: $\quad\left(A^{+}\right)^{+}=A$

$$
(B A)^{+}=A^{+} B^{+} .
$$

HW: Prove this.

Pro: A is an isometry if and only if $A^{+} A=\underline{\|} V$.

Prot: We have

$$
\langle A v, A n\rangle=\langle y, n\rangle
$$

if and cen it

$$
\left\langle A^{+} A y, u\right\rangle=\langle v, u\rangle
$$

whir implies the $A^{+} A=11 V$.

When $V=W$ we will write $U(V)$ for $U(V, V)$.
$U(V)$ hes the structure of a group:

1) $A, B \in U(V)$ then $A B \in U(V)$
2) IIV is the identic element:

$$
A \mathbb{I}_{Y}=\mathbb{I}_{Y}, A=A, \forall A
$$

3) Ever $A \in U(V)$ hes on inverse:

$$
A^{+} A=A^{+} A=\underline{I}_{V}
$$

Direct sum
The direct sum of $\mathbb{C} \wedge$ and $\mathbb{C} T$ 1 the defined as the venter space

$$
\mathbb{C} \wedge \oplus \mathbb{C} \Gamma=\mathbb{C}[\wedge \sim \Gamma]
$$

A venter in $\mathbb{C} \wedge \oplus \mathbb{C} \Gamma$ cen be uniquely expressed ω

$$
y=\sum_{a \in \lambda} \alpha_{a}|a\rangle+\sum_{b \in T} p_{b}|6\rangle .
$$

For a subspan $W C V$ we wite

$$
w^{\perp}=\{v \in V:\langle w, v\rangle=0, \forall w \in w\}
$$

Pro: $V \equiv W \oplus w^{\perp}$.
Prat: Choose on ecthonernel bens $\left[w_{a}: a \in \Lambda\right]$ fer W and extend it to an aetbonernal bans

$$
\left\{w_{a}: a \in \Lambda\right\} \sim\left\{u_{b}: b \in \Gamma\right\}
$$

for V. Then $w \cong \mathbb{C} \wedge, w^{\perp} \cong \mathbb{C} \Gamma$ and $V \equiv \mathbb{C} \Sigma$ where $\Sigma=\Lambda \cup \Gamma$. 炄

Cor: $\left(W^{\perp}\right)^{\perp}=W$.

The kernel of A is defined by

$$
\text { ker } A=\{v \in V: \quad A V=\mathbb{D}\}
$$

and the image of A d defined by

$$
\operatorname{im} A=\{A v \in W: V \in V\}
$$

We have
$\operatorname{dim} V=\operatorname{dim}(\operatorname{im} A)+\operatorname{dim}(\operatorname{ker} A)$

The dimenvien of the image D celled the rank of A :

$$
\operatorname{rank}(A)=\operatorname{dim}(\operatorname{im} A) .
$$

Pro: her $A^{+}=(\operatorname{im} A)^{\perp}$
Pret: For $w \in W$ we have

$$
\begin{aligned}
A^{+} w=0 & \Leftrightarrow\left\langle A^{+} w, \backslash\right\rangle=0 \quad \forall v \in V \\
& \Leftrightarrow\langle w, A v\rangle=0 \quad \forall v \in V \\
& \Leftrightarrow w \in(\operatorname{im} A)^{\perp} .
\end{aligned}
$$

Qor: $\operatorname{im} A=\operatorname{in} A A^{t}$.
Preet: We will show thot

$$
\text { ker } A^{+}=\operatorname{ker} A A^{+} \text {. }
$$

Then the rewult gollows from the Proporition:

$$
\operatorname{im} A=\left(\operatorname{ker} A^{+}\right)^{\perp}=\left(\operatorname{ker} A A^{+}\right)^{\perp}=\operatorname{im} A A^{+} \text {. }
$$

We have
ker $A^{+} C$ loer $A A^{+}$:
$4 A^{+} w=0$ then $A A^{+} w=0$.
Frer the convere let $w \in$ ker $A A^{+}$, thot is, $A A^{+} w=0$.
This implien thot

$$
A^{+} \backsim \in \operatorname{ker} A=\left(\operatorname{im} A^{+}\right)^{\perp}
$$

Therepre

$$
\left\langle A^{+} w, v\right\rangle=0 \quad \forall v \in \operatorname{im} A^{+}
$$

Thus $A^{+} \omega=0$ and $w \in$ leer A^{+}.

Trace
We will write $L(V)$ for $L(V, V)$. Trace is the linear operter

$$
\text { Tr: } L(V) \rightarrow \mathbb{C}
$$

uniquely determined by

$$
\operatorname{Tr}(|u\rangle\langle v|)=\langle v \mid u\rangle .
$$

Pro: Un motix represectotien

$$
\operatorname{Tr}(A)=\sum_{a \in \Sigma} A(a, a)
$$

Prof: We have

$$
\begin{aligned}
\operatorname{Tr}(A) & =\operatorname{Tr}\left(\sum_{a, b} A(a, b)|a\rangle\langle b|\right) \\
& =\sum_{a, b} A(a, b) \operatorname{Tr}(|a\rangle\langle b|) \\
& =\sum_{a, b} A(a, b) \underbrace{\langle b \mid a\rangle}_{\delta a b} \\
& =\sum_{a} A(a, a) .
\end{aligned}
$$

Cor: $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.
$L(V, W)$ is a Hilbert space:

Hilbert - Schmidt (Froberius) inner product

$$
\langle A, B\rangle=\operatorname{Tr}\left(A^{+} B\right)
$$

The standard bans $\{|a\rangle\langle b|\}$ is or tho norma:

$$
\begin{aligned}
\langle\mid c\rangle\langle d|,|a\rangle\langle b \mid\rangle & =\operatorname{Tr}(|d\rangle\langle c||a\rangle\langle b| \\
& =\delta_{c a} \delta_{b d} \\
& =\delta_{(c, d),(a, b)} .
\end{aligned}
$$

Pro: The adjeint of Tr is the linear opeoter $\mathbb{1 1}_{V}: \mathbb{C} \longrightarrow L(V)$.

Proof: We have

$$
\begin{aligned}
\operatorname{Tr}^{+}(1) & =\sum_{a, b}\langle\mid a\rangle\left\langle b \mid, \operatorname{Tr}_{r}^{+}(1)\right\rangle|a\rangle\langle b) \\
& =\sum_{a, b}\langle\operatorname{Tr}(|a\rangle\langle b|), 1\rangle|a\rangle\langle b| \\
& =\sum_{a}|a\rangle\langle a\rangle \\
& =1_{v}
\end{aligned}
$$

Clamen of opeotors
$L(V)$
1
Normal opeotes

$$
\operatorname{Nor}(V)=\left\{A \in L(V): A^{+} A=A A^{+}\right]
$$

Unitoy opeotes $u(v)$
Hermition operotes

$$
\operatorname{Her}(V)=\left\{A \in L(V): A=A^{+}\right\}
$$

Poritle opeotons

$$
P_{0}(V)=\left[B^{+} B: B \in L(V)\right]
$$

Projection opeoters

$$
\operatorname{Proj}(V)=\left\{\pi \in P_{0},(V):\right.
$$

$$
\pi^{2}=\pi 3
$$

Denity opeotes

Pine stats

$$
P(V)=\left\{\pi \in \operatorname{Proj}(V): \operatorname{Tr}_{r}(\Pi)=1\right\}
$$

A nonzeo vector $V \in V$ is called on eigenvertor correspending to $\lambda \in \mathbb{C}$ if $A V=\lambda V$.
The number λ is celled an eigenvalue. Eigenspare correspending to λ.

$$
\left.V_{\lambda}=\left\{V \in V: \quad A_{V}=\lambda_{V}\right\} \quad \sim 0\right\}
$$

Eigenvolus are the roob of the chorcuteristic pelynomice

$$
\operatorname{det}\left(A-\mathbb{1}_{V}\right) .
$$

Note thot there is at lent ore nenzeo solution.

Spentral decompaition theonem Let $A \in \operatorname{Nor}(\mathbb{L})$.
Then there exisb an erthonernel bous $\left\{\left|V_{a}\right\rangle: a \in \Sigma\right\}$ such thot

$$
A=\sum_{a \in \Sigma} \lambda_{a}\left|v_{a}\right\rangle\left\langle V_{a}\right| .
$$

Preet in the Appendix.

A motrix $D: \sum \times \sum \longrightarrow \mathbb{C}$ is caleed digonel if $D(a, b)=0$ when $a \neq b$.

Cor: $4 A \in \operatorname{Nor}(\mathbb{C} \Sigma)$ then there evish $u \in U(\mathbb{C} \Sigma)$ such thot

UA u^{+}is diagorel.
Preot: By the spectrol theren:

$$
A=\sum_{a \in \Sigma} \lambda_{a} \quad\left|v_{a}\right\rangle\left\langle v_{a}\right| .
$$

Let u be deyined by

$$
u\left|v_{a}\right\rangle=|a\rangle
$$

Then

$$
\begin{aligned}
U A U^{+} & =\sum_{a} \lambda_{a} U\left|v_{a}\right\rangle\left\langle v_{a}\right| U^{+} \\
& =\sum_{a} \lambda_{a}|a\rangle\langle a|
\end{aligned}
$$

We say A is unitenly digonalizoble if thee exisb $u \in U(\mathbb{C} \Sigma)$ sul thot UA U ${ }^{+}$is dicyerel.

Characterizations of positive opeotes
The following are equivalent.

1) $\langle V, P V\rangle \in \mathbb{R} \geqslant 0 \quad \forall v \in V$.
2) $p \in H$ Herm (V) and eigenvalus of
P belong to $\mathbb{R} \geqslant 0$.
3) $P=A^{+} A$ for sone $A \in L(V)$.
4) $\langle Q, P\rangle \in \mathbb{R} \geqslant 0 \quad \forall Q \in \operatorname{Pos}(V)$.

Prot: $(1 \Longrightarrow 2)$ by spertrol deeonvaitive:

$$
P=\sum_{a \in \Sigma} \lambda_{a}\left|v_{a}\right\rangle\left\langle v_{a}\right|
$$

We have $\lambda_{a}=\left\langle V_{a}, P V_{a}\right\rangle \in \mathbb{R} \geqslant 0$. P is herniation rue ib eigenvalues are real.

$$
(2 \Rightarrow 3) \text { Let } A=\sum_{a} \sqrt{\lambda a} \quad\left|v_{a}\right\rangle\left\langle v_{a}\right| .
$$

The $P=A^{+} A$.
$(3 \Rightarrow 4)$ We cen write $Q=B^{t} B$.
Then $\langle Q, P\rangle=\operatorname{Tr}(Q P)$

$$
\begin{aligned}
& =\operatorname{Tr}\left(B^{+} B A^{+} A\right) \\
& =\operatorname{Tr}\left(B A^{+}\left(B A^{+}\right)^{+}\right) \\
& =\left\langle B A^{+}, B A^{+}\right\rangle \in \mathbb{R}_{\geqslant 0}
\end{aligned}
$$

$(4 \Rightarrow 1)$ Take $Q=|v\rangle\langle y|$.

Polar deomporitien theorem:
For $A \in L(V, W)$ we have

$$
A=u \sqrt{A^{+} A}
$$

(left polar decompritien)
for some $u \in U(V, \omega)$.
Proof in the Appendix. (There is also right polar decomprition $A=\sqrt{A A^{+}} U$.
Cor (Singular value theorem):
Let $A \in L(V, W)$ be a nenzeo liver epester such that rank $(A)=r$.

Then thee exist erthonermel rets

$$
\begin{aligned}
& \left\{V_{a}: a \in \mathcal{Y} \subset V\right. \text { and } \\
& \left\{w_{a}: a \in X\right. \text { such that } \\
& A=\sum_{a \in \Lambda} \text { sa }\left|w_{a}\right\rangle\left\langle V_{a}\right|
\end{aligned}
$$

where $|\wedge|=r$ and $\operatorname{sa} \in \mathbb{R}>0$.
Pret: Since $A^{+} A \in \operatorname{Pos}(V)$, by the spectral deomprition we have

$$
A^{+} A=\sum_{a \in \Lambda} \lambda_{a}\left|v_{a}\right\rangle\left\langle v_{a}\right| .
$$

where $\lambda_{a} \in \mathbb{R}>0$.
Then

$$
\begin{aligned}
& A=u \sqrt{A^{+} A}=\sum_{a \in N} \sqrt{\lambda_{s_{a}}} \underbrace{U\left|v_{a}\right\rangle}_{\left|w_{a}\right\rangle}\left\langle v_{a}\right|
\end{aligned}
$$

include: $U D V$

Quantum states
We have see that a register comes with a set Σ of conical stats. A probalailstic state an the register is a probability distribution, ie., a furthion

$$
p: \Sigma \rightarrow \mathbb{R} \geqslant 0
$$

such that $\sum_{a \in \Sigma} p(a)=1$.
We will write Dist (Σ) jor the set of problabity distributions an Σ.

In quentin ingornotien theory states of registers are represented by quertur states.

A quentin state is a density opeoter of the form $e \in \operatorname{Den}(\mathbb{C} \Sigma)$.
By spectral derompaition

$$
p=\sum_{a \in \Sigma} P_{a}\left|V_{-}\right\rangle\left\langle V_{a}\right|
$$

where $p_{a} \geqslant 0$ and $\quad \sum p_{a}=1$.
That is $p: \Sigma \rightarrow \mathbb{R} \geqslant 0$ defined by $p(a)=p_{a}$ is a probability distribution.

A probabilistic state P can be regarded as a peatum state represented by a digenel demity opeoter.

A quentin state is said to be pres if $e^{2}=e$.

Pro: Every pine state is of the form $|V\rangle\langle y|$ jer some unit vector $v \in V$.

More over,

$$
|v\rangle\langle v|=|u\rangle\langle u|
$$

if and only if $u=\alpha v$ far some $\alpha \in U(\mathbb{C})$.

HW: Prove this.

An ensemble of states is a function

$$
\eta: \Gamma \rightarrow \operatorname{Pos}(\mathbb{C} \Sigma)
$$

sah)fying $\operatorname{Tr}\left(\sum_{a \in \Gamma} \eta(a)\right)=1$.
Note that

$$
\begin{aligned}
p: \quad[& \longmapsto \mathbb{R} \geqslant 0 \\
a & \longmapsto \operatorname{Tr}\left(q^{(a)}\right)
\end{aligned}
$$

is a probability distribution.

$$
e=\sum_{a \in \Sigma} \lambda_{a}\left|v_{a}\right\rangle\left\langle v_{a}\right| .
$$

Then $2: \sum \rightarrow P_{0}(\mathbb{C} \mathcal{Z})$ degree by $\eta^{(a)}=\lambda_{a}\left|V_{a}\right\rangle\left\langle v_{a}\right|$ is c_{n} ensemble of pure states.

Pro: Den (CE) coincides with the set of ensembles of pure states.

Tenser product
The tenser product of $\mathbb{C} \Sigma$ and $\mathbb{C} \Gamma$ is the Hilbert space

$$
\mathbb{C} \Sigma \otimes \mathbb{C} r=\mathbb{C}[\Sigma \times r] .
$$

A vecter in the tenser product is represented by $v \otimes u$:

$$
\begin{aligned}
v \otimes u= & \sum_{a} \alpha_{a}|a\rangle \otimes \sum_{b} \mathbb{P}_{b}|b\rangle \\
= & \sum_{a, b} \alpha_{a} p_{b} \underbrace{|a\rangle \otimes|b\rangle}_{\text {who write }} \\
& \text { we a bo or }|a b\rangle
\end{aligned}
$$

The inner product is given by

$$
\left\langle v o u, v^{\prime} \infty u^{\prime}\right\rangle=\left\langle y, v^{\prime}\right\rangle\left\langle u, u^{\prime}\right\rangle .
$$

The Hilbert space associated to a compound register i) $\mathbb{C} \Sigma \otimes \mathbb{C} T$.
Hence a quantum state jer such a register is a denvity opeoter $e \in \operatorname{Den}(\mathbb{C} \Sigma \otimes \mathbb{C} T)$.

Given $\quad A: \mathbb{C} \sum \longrightarrow \mathbb{C} \Sigma^{\prime}$ and $B: \mathbb{C} r \longrightarrow \mathbb{C} \Gamma^{\prime}$ the tenser product $A \otimes B D$ defied by

$$
\begin{array}{r}
A \otimes B: \mathbb{C}\left[\otimes \mathbb{C} T \rightarrow \mathbb{C} \Gamma^{\prime} \otimes \mathbb{C} T^{\prime}\right. \\
A \otimes B(v \otimes u)=A v \otimes B u .
\end{array}
$$

Pro: $(A \otimes B)^{+}=A^{+} \otimes B^{+}$.

$$
\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B)
$$

In Diva notation we wite

$$
\begin{aligned}
\left|v^{\prime}\right\rangle\langle v| \otimes\left|u^{\prime}\right\rangle\langle u| & =\left|v^{\prime}\right\rangle \otimes\left|u^{\prime}\right\rangle\langle v| \otimes\langle u| \\
& =\left|v^{\prime}\right\rangle\left|u^{\prime}\right\rangle\langle v|\langle u| \\
& =\left|v^{\prime} u^{\prime}\right\rangle\langle v u| .
\end{aligned}
$$

The operates $\left\{\left|a^{\prime} b^{\prime}\right\rangle\langle a b|\right\}$
form an acthonermel bass jor

$$
L\left(\mathbb{C} \Sigma \otimes \mathbb{C} r, \mathbb{C} \Sigma^{\prime} \otimes \mathbb{C} \Gamma^{\prime}\right) .
$$

Partial trace
Given $V \infty W$ the petrol trace Trow i) the liver operoter

$$
T_{w}: L(V \infty \omega) \rightarrow L(V)
$$

defied by

$$
T_{r}=\|_{V} \otimes T_{r} .
$$

We have

$$
\operatorname{Tr}_{w}(A \otimes B)=A \otimes \operatorname{Tr}(B) .
$$

Partied tran

$$
T_{r_{V}}: L(V \otimes W) \rightarrow L(W)
$$

1) similar deynued.

For a compound register with a quentin state

$$
e \in \operatorname{Den}(V \otimes w)
$$

the state associated to each register is given by

$$
e^{V}=\operatorname{Tr}_{w} e \text { and } e^{w}=\operatorname{Tr}_{V}, e .
$$

Opeoter - venter correspendence
There is an isomerphism (of Hibut spans)
vee: $L(\mathbb{C} \Sigma, \mathbb{C} \Gamma) \rightarrow \mathbb{C} \Gamma \infty \mathbb{C}^{\Sigma}$ degined by

$$
\operatorname{vee}(|a\rangle\langle b|)=|a\rangle|b\rangle .
$$

We have

$$
\begin{aligned}
\langle\mid a\rangle\langle b|,|c\rangle\langle d \mid\rangle & =\operatorname{Tr}(|b\rangle\langle a||c\rangle\langle d|) \\
& =\langle a \mid c\rangle\langle d \mid b\rangle \\
& =\langle a b \mid c d\rangle \\
& =\langle\mid a b\rangle,|c d\rangle\rangle
\end{aligned}
$$

Far arbitrory vector) we have

$$
\begin{aligned}
\operatorname{vec}(|v\rangle\langle u|)= & \sum_{a, b} v_{a} \bar{u}_{b} \text { vec }(|a\rangle\langle b|) \\
= & \sum_{a, b} v_{a} \bar{u}_{b}|a\rangle|b\rangle \\
= & |v\rangle|\bar{u}\rangle .
\end{aligned}
$$

Lem: $\left(A_{0} \otimes A_{1}\right) \operatorname{vec}(B)=\operatorname{vec}\left(A_{0} B A_{1}^{\top}\right)$

Preot: By linecity it argrice to proce thi for $B=|a\rangle\langle b|$.
Then

$$
\begin{align*}
\left(A_{0} \otimes A_{1}\right) \operatorname{vec}(B) & =A_{0}|a\rangle A_{1}|b\rangle \\
& =A_{0}|a\rangle\left(\langle b| A_{1}^{+}\right)^{+} \\
& =\operatorname{vec}\left(A_{0}|a\rangle\langle 0| A_{1}^{\top}\right) . \tag{13}
\end{align*}
$$

Lem: $\operatorname{Tr}_{v}\left(\operatorname{vee}(A) \operatorname{vee}(B)^{+}\right)=A B^{+}$.

Prost: By cnti-likeerty it agyia to prove the jor $B=|a\rangle\langle b|$.
We hove

$$
\begin{align*}
& \operatorname{Tr}_{V}\left(\operatorname{vee}(A) \operatorname{vee}(B)^{+}\right)=\operatorname{Tr}_{y}\left(\operatorname{vec}(A)(|a b\rangle)^{+}\right) \\
&=\operatorname{Tr}_{y}(\operatorname{vec}(A)(a b \mid) \\
&=\sum_{c_{1} d} A(c, d) \operatorname{Tr}_{V}(\underbrace{|c d\rangle\langle a b|}) \\
&=\sum_{c_{1} d} A(c, d) \quad|c\rangle\langle d||b\rangle\langle a| \\
&=A b^{+} \tag{5}
\end{align*}
$$

HW: $\operatorname{Tr}_{w}\left(\operatorname{vec}(A) \operatorname{vec}(B)^{+}\right)=A^{\top} \bar{B}$.

Schmidt decorpoitiber
Let $|V\rangle \in V \otimes W$ be a nonzero venter.
Then thee exist erthonermel rets
$\left\{v_{a}: a \in \wedge\right\} \quad$ and
\{wa: $a \in A\} \in$ such that

$$
|u\rangle=\sum_{a \in \Lambda} s_{a}\left|V_{a} w_{a}\right\rangle
$$

where $s a \in \mathbb{R}>0$ and $\sum_{a \in \lambda} s_{a}^{2}=1$.
Prot: tet $A \in L(\omega, \backslash)$ be such that

$$
\operatorname{vec}(A)=|u\rangle
$$

By single value decompentitas

$$
A=\sum_{a \in A} \text { so }|V a\rangle\left\langle w_{a}^{\prime}\right|
$$

Then

$$
|u\rangle=\operatorname{ver}(A)=\sum_{a} \operatorname{sa} \mid v_{a} \underbrace{\bar{N}_{a}^{\prime}}_{\bar{N}_{a}^{\prime}}) .
$$

We have

$$
\begin{aligned}
1 & =\operatorname{Tr}(|u\rangle\langle u|) \\
& =\frac{\sum}{a} s_{a}^{2}
\end{aligned}
$$

Purizictien
Let $P \in P_{\gg}(V)$.
A vecter $|u\rangle \in V \otimes W$ is said to be a puificotilen of P if

$$
P=\operatorname{Tr}_{w}(|u\rangle\langle u|)
$$

Lem: The jollowity are equivalet.

1) There exists a perigicatie $|u\rangle$ of P.
2) There exisb $A \in L(W, V)$ such thot

$$
P=A A^{t}
$$

Preof: Sime vec is on isomerphism any vecter can be witten os

$$
|u\rangle=\operatorname{vec}(A)
$$

We have

$$
\begin{aligned}
\operatorname{Tr}_{w}(|u\rangle\langle u|) & =\operatorname{Tr}_{w}\left(\operatorname{vec}(A) \operatorname{vec}(A)^{+}\right) \\
& \left(\text {Lem) } A A^{+} .\right.
\end{aligned}
$$

Puigiotien theorem
There erish a purfichter $|u\rangle \in V \otimes w$ of P if and only if $\operatorname{dim} \omega \geqslant \operatorname{ranh} P$.

Proot: Puijiotion exish if and onls it thee exisb $A \in L(W, V)$ sur thot $P=A A^{+}$. (Lem)

This implies thet

$$
\operatorname{rank}(P)=\operatorname{rah}(A) \quad(\operatorname{Car})
$$

and theegene rach $P \leq \operatorname{dim} W$.
Cenverels, by spectral deorpaitibu

$$
P=\sum_{a \in \Sigma} \underbrace{\lambda_{a}\left|V_{a}\right\rangle\left\langle V_{a}\right|}_{\in \mathbb{R}>0}
$$

Sine $\operatorname{din} W \geqslant$ rank P thee exisb on orthonerral set $\{|w a\rangle: a \in \Sigma\}$. Then letting (ef size |モ|)

$$
A=\sum_{a \in L} \sqrt{\lambda a}\left|v_{a}\right\rangle\left\langle w_{a}\right|
$$

gives $\quad A A^{+}=P$.

Unitong equivaler of purfletion Let $u, v \in V \neq W$ be ruch thot

$$
\operatorname{Tr}_{w}|u\rangle\langle u|=\operatorname{Tr}_{w}|v\rangle\langle y| .
$$

The the exe exisb $u \in u(w)$ such thot $|v\rangle=\|_{v} \otimes u|u\rangle$.

Preset: Let A and B be such that

$$
|u\rangle=\operatorname{ver}(A) \text { and } \quad|v\rangle=\operatorname{ver}(B) .
$$

We have

$$
A A^{+}=B B^{+}
$$

By single value durparitien

$$
\begin{aligned}
& A=\sum_{a \in \lambda} \sqrt{\lambda_{a}}\left|v_{a}\right\rangle\left\langle w_{a}\right| \\
& B=\sum_{a \in \Lambda} \sqrt{\lambda_{a}}\left|v_{a}\right\rangle\left\langle\sim_{a}\right| .
\end{aligned}
$$

Let $\vec{u} \in U(V)$ be such that

$$
\widetilde{u}|\vec{w} a\rangle=\left|w_{c}\right\rangle
$$

Then $A \stackrel{\Psi}{u}=B$ and setting $u=\bar{u} T$
we obtain

$$
\begin{aligned}
\mathbb{I}_{v} \otimes u|u\rangle & =\|_{v} \otimes \vec{u}^{\top} \operatorname{vec}(A) \\
& =\operatorname{vec}(A \vec{u}) \quad(\text { Lem. }) \\
& =\operatorname{vec}(B) \\
& =|v\rangle
\end{aligned}
$$

Convider a compound resister

$$
\frac{\sqrt{\Gamma} \sqrt{r}}{|x\rangle<x \mid \in \operatorname{Den}(\mathbb{C} \Sigma \otimes \mathbb{C} r)}
$$

Let $e=\operatorname{Tratartch} \mid \mathrm{Vrcc}$.
Mote that for an $u \in U(\mathbb{C} r$)
For $|u\rangle=\mathbb{1}$ at $\otimes U|v\rangle$ we have.

$$
e=\operatorname{Tr}_{\mathbb{C} \mid}|u\rangle(n) .
$$

The theorem implies the converse:
Y $|u\rangle \in \mathbb{C} \Sigma \otimes \mathbb{C} T$ such that

$$
e=\operatorname{Tr}_{\mathbb{C} F}|u\rangle(u)
$$

the $\exists u \in U(Q T)$ sue tot

$$
|u\rangle=\|_{\mathbb{a} \tau} \otimes u|v\rangle
$$

Fidelity
For $A \in L(Y, W)$ the trace norm is dyglied by

$$
u A U_{1}=\operatorname{Tr} \sqrt{A^{+} A} \cdot\left(\begin{array}{l}
\text { show that } \\
\text { tho Dar } \\
\text { norm }
\end{array}\right)
$$

Pro: For $A \in L(Y)$ we have

$$
U A U_{1}=\max \{1\langle U, A\rangle \mid: U \in U(v)\}
$$

Pret: By single value deorporition:

$$
A=\sum_{a} s_{a}\left|w_{a}\right\rangle\left\langle V_{a}\right| .
$$

Then

$$
\begin{aligned}
|\langle U, A\rangle|^{2} & =\left|\operatorname{Tr}\left(U^{+} A\right)\right| \\
& =\sum_{a} s_{a}\left|\left\langle v_{a}, U^{+} w_{a}\right\rangle\right| \\
& \leqslant \sum_{a} s_{a} \underbrace{U v_{a} U}_{1} \underbrace{U}_{a} \underbrace{U_{w a}^{+} U}_{a} \\
& =\sum_{a} s_{a} \\
& =U A U_{1} . \\
U A U_{1} & =\operatorname{lr}_{1}\left(\sqrt{A^{+} A}\right) \\
& =\operatorname{Tr}\left(\sum_{a} s_{a}\left|V_{a}\right\rangle\left\langle v_{a}\right|\right) \\
& =\sum_{a} s_{a}
\end{aligned}
$$

This maxim is achieved at U thot satisies

$$
A=U \sqrt{A^{+} A}
$$

Cor: Let $A \in L(V)$ and $U_{1}, U_{2} \in U(W, v)$.
Then

$$
u u_{1}^{+} A u_{2} u_{1}=U A U_{1}
$$

Pret: Folbus from

$$
\begin{aligned}
\left\langle u_{1} u_{1}^{+} A u_{2}\right\rangle & =\operatorname{Tr}\left(u^{+} u_{1}^{+} A u_{2}\right) \\
& =\operatorname{Tr}\left(u_{2} u^{+} u_{1}^{+} A\right) \\
& =\operatorname{Tr}\left(\left(u_{1} u u_{2}^{+}\right)^{+} A\right) \\
& =\left\langle u_{1} u u_{2}^{+}, A\right\rangle
\end{aligned}
$$

and the Proposition.

For $P, Q \in P_{o s}(V)$ the fidelity between P and Q is defined by

$$
F(P, Q)=U \sqrt{P} \sqrt{Q} U_{1} .
$$

More explicitly, we have

$$
F(P, Q)=\operatorname{Tr}(\sqrt{\sqrt{Q} P \sqrt{Q}})
$$

In particule, for a mit venter $v \in V$

$$
\begin{aligned}
F(P,|v\rangle\langle v|) & =\operatorname{Tr} V \overline{|v\rangle\langle v, P v\rangle\langle v|} \\
& =\operatorname{Tr}(\sqrt{\langle v, P v\rangle}|v\rangle\langle v|) \\
& =V \overline{\langle v, P v\rangle} .
\end{aligned}
$$

In pastiche

$$
F(|u\rangle\langle u\rangle,|v\rangle\langle v|)=|\langle u, v\rangle| .
$$

Pro: The following properties hold.

1) $F(P, Q) \geqslant 0$ with equality if and only if $P Q=0$
2) $F(P, Q)^{2} \leqslant \operatorname{Tr}(P) \operatorname{Tr}(Q)$ with equality if and only if P and Q are linearly dependent.

Prot: We have

$$
F(P, Q)=\|\sqrt{1} \sqrt{Q}\|_{1} \geqslant 0
$$

with equality if and enc it $\sqrt{P} \sqrt{Q}=D$ sine U.U, is a norm. The latter condition is equivalent to $P Q=\mathbb{D} . \quad($ Exerice: $\sqrt{P} \sqrt{Q}=D$ $\Leftrightarrow \quad n \sqrt{p} \sqrt{Q} u=0$.) Fer the second property we have

$$
\begin{aligned}
U \sqrt{P} \sqrt{Q} U^{2}, \stackrel{P r o}{=} & |\langle U, \sqrt{P} \sqrt{Q}\rangle|^{2} \\
& =\left.1\langle\sqrt{P} U, \sqrt{Q}\rangle\right|^{2} \\
& \leqslant U \sqrt{P} U U^{2} U \sqrt{Q} U^{2} \\
= & \operatorname{Tr}\left(U^{+} \sqrt{P} \sqrt{P} U\right) \operatorname{Tr}(\sqrt{Q} \sqrt{Q}) \\
& =\operatorname{Tr}(P) \operatorname{Tr}(Q)
\end{aligned}
$$

When P and Q are linearly dependent, ie. $\alpha P+p Q=\mathbb{D}$ when $\underbrace{\alpha, p \in \mathbb{C} \text {, }}$ we cen directly show tho notall

$$
u \sqrt{p} \sqrt{Q} U_{1}=\operatorname{Tr}(p) \operatorname{Tr}(Q) .
$$

On the other hand, if P and Q are linech independent the (exercise) $\sqrt{P} u$ and \sqrt{Q}. The implies a strict inequality. (by Carcly-Schuen)

Cor: Far $e, \sigma \in \operatorname{Den}(V)$ we have

$$
0 \leqslant F(e, b) \leqslant 1
$$

where

1) $F(e, 0)=0$ if and only if $e g=\mathbb{D}$,
2) $F(e, v)=1$ if and on s if $e=6$.

Pro: For $u \in L(V, \omega)$ we have

$$
\left.F\left(u p u^{t}\right) u Q u^{t}\right)=F(P, Q)
$$

Pret: We have

$$
\begin{aligned}
& \| \sqrt{U P P^{+}} \sqrt{U Q u^{+} U_{1}}=U U \sqrt{p} U^{+} u \sqrt{Q} U^{+} \|_{1} \\
&=U \sqrt{p} \sqrt{Q} U_{1} \\
& \text { cor } \\
& \text { By spectral deopperitiles } \quad P=\sum_{a} \lambda_{a}\left|v_{a}\right\rangle\left\langle v_{a}\right|
\end{aligned}
$$ Then $u p u^{+}=\sum_{a} \lambda_{a} \quad u\left|v_{a}\right\rangle\left\langle v_{a}\right| u^{+}$.

Therefore

$$
\begin{aligned}
\sqrt{u p u^{+}} & =\sum_{a} \sqrt{\lambda_{a}} u\left|v_{-}\right\rangle\left\langle v_{a}\right| u^{+} \\
& =u\left(\sum_{a} \sqrt{\lambda_{a}}\left|v_{a}\right\rangle\left(v_{a} \mid\right) u^{+}\right. \\
& =u \sqrt{p} u^{+}
\end{aligned}
$$

Whlmann's theorem
Let V and W be Hilbert spares.
Let $P, Q \in P_{0 s}(V)$ be such that

$$
\operatorname{ranh}(D), \operatorname{ranh}(Q) \leqslant \operatorname{dim}(W)
$$

let $u \in V \otimes W$ be a prijicotion of P.
Then

$$
\begin{array}{r}
F(P, Q)=\operatorname{mox}\{|(V, u\rangle|: \quad y \in V \otimes W, \\
\quad \operatorname{Tr}_{w}(|v\rangle\langle x|)=Q
\end{array}
$$

Lem: For $A, B \in L(W, V)$ we have

$$
F\left(A A^{+}, B B^{+}\right)=U A^{+} B U_{1}
$$

Prot: Consider the poler deconparition

$$
L(V \oplus W) \ni\left(\begin{array}{ll}
0 & A \\
0 & 0
\end{array}\right)=p u
$$

We have $P^{2}=\left(\begin{array}{ll}0 & A \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & A \\ 0 & 0\end{array}\right)^{+}$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
D & A \\
D & D
\end{array}\right)\left(\begin{array}{cc}
D & 0 \\
A^{+} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
A A^{+} & 0 \\
D & 0
\end{array}\right)
\end{aligned}
$$

and $\quad P=\left(\begin{array}{cc}\sqrt{A A^{+}} & D \\ (D & D\end{array}\right)$.
similes we hove

$$
\left(\begin{array}{ll}
0 & B \\
D & 0
\end{array}\right)=Q V
$$

whee

$$
Q=\left(\begin{array}{cc}
\sqrt{B B^{t}} & 0 \\
0 & 0
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& F\left(A A^{+}, B B^{+}\right)=\| \sqrt{A A^{+}} \sqrt{B B^{+}} U_{1} \\
& =\left\|\left(\begin{array}{cc}
\sqrt{A A^{+}} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\sqrt{B B^{+}} & 0 \\
0 & 0
\end{array}\right)\right\|_{1} \\
& =\| P Q U_{1} \quad\left(\begin{array}{cc}
\sqrt{A A^{+}} \sqrt{B B^{+}} & \mathbb{D} \\
0 & D
\end{array}\right) \\
& \stackrel{\operatorname{cor}}{=} \| U^{+} P Q \vee U_{1} \\
& =U(P U)^{+}(Q V) U_{1} \\
& =\left\|\left(\begin{array}{ll}
0 & A \\
0 & 0
\end{array}\right)^{+}\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\|_{1} \\
& =\left\|\left(\begin{array}{cc}
0 & 0 \\
A^{+} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\|_{1} \\
& =\left\|\left(\begin{array}{cc}
0 & 0 \\
0 & A^{+} B
\end{array}\right)\right\|_{1} \\
& =U A^{+} B U_{1} \text {. }
\end{aligned}
$$

Cor: For $u, v \in V \otimes \omega$ we hove

$$
F\left(\operatorname{T}_{w}|u\rangle\langle u|, \operatorname{T}_{r_{w}}|v\rangle\langle v|\right)=\| \operatorname{Tr}_{v}|v\rangle\langle u| U_{1}
$$

Prot: Let $A, B \in L(W, V)$ be such that $\operatorname{vec}(A)=u$ and $\operatorname{vec}(B)=v$.

We have

$$
\begin{aligned}
F\left(\operatorname{Tr}_{w}|u\rangle\langle u|,\right. & \left.\operatorname{Tr}_{w}|v\rangle\langle v|\right) \\
= & F\left(A A^{+}, B B^{+}\right) \\
= & U A^{+} B U_{1} \\
= & U\left(A^{+} B\right)^{\top} U_{1} \\
& =\| \operatorname{Tr}_{v}|v\rangle\langle u| U_{1}
\end{aligned}
$$

Pret of Uhlmonn's theorem
By the unitas equivelaer of progrotions:

$$
\begin{aligned}
& \max \left\{|\langle u, v\rangle|: v \in V \otimes w, \operatorname{Tr}_{w}|v\rangle\langle v|=Q\right\} \\
& =\max \left\{1\left\langle u,\left(\mathbb{H}_{v}, \otimes u\right) w\right\rangle \backslash: u \in u(v)\right]
\end{aligned}
$$

Let A, B be such that

$$
\begin{array}{ll}
\operatorname{vec}(A)=n \\
\operatorname{vec}(B)=w
\end{array} \quad \begin{array}{ll}
H W: \\
B U^{\top}=\mathbb{H}_{v} \otimes U \operatorname{rec}(B)
\end{array}
$$

Then

$$
\begin{aligned}
\langle\operatorname{vec}(B) & \left.=\omega, \mathbb{H}_{v} \otimes U w\right\rangle
\end{aligned} \begin{aligned}
& =\left\langle A, B U^{\top}=\mathbb{1}_{v} \otimes U \operatorname{vec}(B)\right. \\
& =\left\langle\bar{U}, A^{+} B\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\max \left\{\left|\left\langle\bar{U}, A^{+} B\right\rangle\right|: U \in U(\omega)\right\} \\
& \text { Pro }=U A^{+} Q U, \\
& \operatorname{Len}=F\left(A A^{+}, B B^{+}\right)=F(P, Q) .
\end{aligned}
$$

Cor: $F(P, Q)=F(Q, P)$.
Proot: This joblos tron unitary equvalence of puipotions

$$
\begin{aligned}
& F(p, Q)=\max \{|\langle u, \mathbb{1} \infty U w\rangle|: U \in U(\omega)] \\
& =\max \left\{\left|\left\langle\mathbb{1} \otimes u^{+} u, w\right\rangle\right|: u \in u(w)\right\} \\
& =\operatorname{nox}\left\{1\left\langle w, 1 \otimes \infty U^{+} u\right\rangle: u \in u(w)\right\rangle \\
& =\operatorname{nox}\{1\langle w, \mathbb{1} \infty u \backsim\rangle: u \in U(w)\rangle \\
& =F(P, Q) \text {. }
\end{aligned}
$$

Altenotively the abo jollous grom

$$
U A U_{1}=U A^{+} n_{1}
$$

Alterrotile proot of Uhlmen's theoren

$$
\begin{aligned}
& F(P, Q)=\max \{|\langle u, \mathbb{H} \otimes u v\rangle|: u \in u(w)] \\
& |u\rangle=\sum_{a} \sqrt{P} \otimes \mathbb{I}_{w} \quad|a a\rangle \\
& |v\rangle=\sum_{a} \sqrt{Q} \otimes \mathbb{I}_{w}|a a\rangle \\
& \left.\begin{array}{ll}
|u\rangle & \text { purgies } P \\
|v\rangle \\
\text { purgies } \\
Q
\end{array}\right] \text { Extrin } \\
& |\langle u, \underline{\omega} \otimes u v\rangle| \\
& \left.=\left|\sum_{a, b}\langle a a| \sqrt{P} \otimes\| \|_{w} \sqrt{Q} \otimes U\right| b b\right\rangle \mid \\
& \left.=\left|\sum_{a, b}\langle a,| \sqrt{P} \sqrt{Q} \otimes U\right| 6 b\right\rangle \mid \\
& \left.=\left|\sum_{a, b}\langle a a| \sqrt{P} \sqrt{Q} \otimes \sum_{c, d} u(c, d)\right| c\right\rangle\langle d||66\rangle \mid \\
& =\mid \sum_{a, b} \underbrace{\langle\text { U(a,b) } 16\rangle}_{\operatorname{Tr}(\underbrace{\langle a| \sqrt{p} \sqrt{Q} U(a, b)|b\rangle} \mid}) \\
& =\mid \operatorname{Tr}(\sqrt{P} \sqrt{\bar{Q}} \underbrace{\left.\sum_{a, b} U(a, b)|b\rangle\langle a|\right)}_{U^{\top}} \mid \\
& =\left|\operatorname{Tr}\left(\sqrt{p} \sqrt{Q} U^{\top}\right)\right| \\
& \stackrel{\operatorname{Lem}}{\leqslant} \operatorname{Tr}(|\sqrt{1} \sqrt{Q}|) \\
& =U \sqrt{p} \sqrt{a} U_{1}
\end{aligned}
$$

Taking $U^{\top}=B^{+}$where $B \in U(V)$ is such that $\sqrt{P} \sqrt{Q}=|\sqrt{P} \sqrt{Q}| B \quad$ (paler deorparitien)
we get

$$
\begin{aligned}
\left|\operatorname{Tr}\left(\sqrt{p} \sqrt{Q} U^{\top}\right)\right| & =\left|\operatorname{Tr}\left(\sqrt{p} \sqrt{Q} B^{t}\right)\right| \\
& =|\operatorname{Tr}(|\sqrt{p} \sqrt{Q}|)| \\
& =\operatorname{Tr}(|\sqrt{p} \sqrt{Q}|)
\end{aligned}
$$

Thus max given the fidelity.
Lem: For $A \in L(V)$ and $U \in U(Y)$ we hove

$$
|\operatorname{Tr}(A u)| \leq \operatorname{Tr}|A|
$$

with equality fer $U=B^{+}$where $A=\backslash A \mid B$ is the paler deompeitibe.
Pref: We have

$$
\begin{aligned}
|\operatorname{Tr}(A u)| & =|\operatorname{Tr}(|A| B u)| \\
|\langle\sqrt{|A|}, \sqrt{|A|} B u\rangle| \quad & =|\operatorname{Tr}(\sqrt{|A|} \sqrt{|A|} B u)| \\
& \leq \sqrt{\operatorname{Tr}(|A|) \operatorname{Tr}(\underbrace{U^{+} B^{+}|A| B U} \underbrace{\text { Caves Schwere }}_{\operatorname{Tr}^{|A|}(|A|)}} \\
& =\operatorname{Tr}|A| .
\end{aligned}
$$

when $U=B^{+}$the equality holds in lauthy-Schwore incl.

Strong concavity of fidelity
For $p, q \in \operatorname{Dist}(\Lambda)$

$$
\begin{aligned}
F\left(\sum_{a \in \Lambda} P_{a} P_{a},\right. & \left.\sum_{a \in \Lambda} q_{a} Q_{a}\right) \\
& \geqslant \sum_{a \in \Lambda} \sqrt{P_{a} q_{a}} F\left(P_{a}, Q_{a}\right) .
\end{aligned}
$$

Prot: By Uneven's theorem there exist, puigiotion u_{a} and v_{a} such trot

$$
F\left(P_{a}, Q_{a}\right)=1<u_{a}\left|v_{a}\right\rangle 1
$$

Let $u=\mathbb{A}$. Then puigien P_{a}

$$
|u\rangle=\sum_{a \in \Lambda} \sqrt{p_{a}}\left|u_{a}\right\rangle|a\rangle \text { and }|v\rangle=\sum_{a \in \Lambda} \sqrt{q_{a}}\left|v_{a}\right\rangle|a\rangle
$$

ore puifiction for

$$
P=\sum_{a} P_{a} P_{a} \quad \text { and } \quad Q=\sum_{a} q_{a} Q_{a} \text {. }
$$

Verify $T_{w o u}|u\rangle\langle u|=P$, similert for Q.
Again by uhlmen's theorem

$$
\begin{aligned}
F(P, Q) & \geqslant|\langle u \mid v\rangle| \\
& =\sum_{a} \sqrt{p_{a} q_{a}}\left|\left\langle u_{a} \mid v_{a}\right\rangle\right| \\
& =\sum_{a} \sqrt{P_{a} q_{a}} F\left(P_{a}, Q_{a}\right)
\end{aligned}
$$

Appendix: Precess of some theorems
Proof of Cauchy - Schwarz inequality
if $u=\alpha v$ then the inequality holds.
Assume $u \neq 0$ and $\{v, u\}$ linear indeper dent.
Gram- Schmidt gives on octhonernel set $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ where $\vec{v}_{1}=v / \| v u$. We cen express v as

$$
u=\left\langle\stackrel{\rightharpoonup}{v}_{1}, u\right\rangle \stackrel{\rightharpoonup}{v}_{1}+\left\langle\stackrel{\rightharpoonup}{v}_{2}, u\right\rangle \stackrel{\rightharpoonup}{v}_{2}
$$

Then $\langle u, u\rangle\langle v, y\rangle$ is given by

$$
\begin{align*}
& \left\langle\sum_{i}\left\langle\vec{v}_{i}, u\right\rangle \vec{v}_{i}, \sum_{i}\left\langle\vec{v}_{i}, u\right\rangle \vec{v}_{j}\right\rangle\langle v, v\rangle \\
& =\left(\sum_{i}\left\langle u, \vec{v}_{i}\right\rangle\left\langle\vec{v}_{i}, u\right\rangle\right\rangle\langle v, v\rangle \\
& \geqslant\left\langle u, \tilde{v}_{1}\right\rangle\left\langle\widetilde{v}_{1}, u\right\rangle\left\langle v_{1}, v\right\rangle \\
& =\langle u, v\rangle\langle v, u\rangle\left\langle\frac{v, v\rangle}{u v u^{2}}\right. \\
& =|\langle u, v\rangle|^{2} \quad \tag{4}
\end{align*}
$$

Preat of the spectral deompaition therrem We will do induction on $1 \sum 1$.

For $|\Sigma|=1$ we have

$$
A=\lambda|a\rangle\langle a|
$$

Assume $|\Sigma| \geqslant 2$.
Let λ be an eigenvalue of A and let M_{λ} be the projecter ento V_{λ} :

$$
T=\sum_{b \in T}\left|v_{b}\right\rangle\left\langle v_{b}\right|
$$

where $\left\{\left|V_{6}\right\rangle: b \in \Gamma\right\}$ is an aethonernel bers ef V_{λ}.

Define anothe projecter

$$
\Pi^{\perp}=\mathbb{1}_{V}-\Pi
$$

Obsere thot

$$
\square \nabla^{\perp}=\square^{\perp} \sqcap=0 .
$$

We have

$$
\begin{aligned}
A & =\mathbb{1}_{V} A \underline{1} V \\
& =\left(\Pi+\Pi^{\perp}\right) A\left(\square+\Pi^{\perp}\right) \\
& =\Pi A \square+\underbrace{\Pi^{\perp} A \square}_{\text {clain ths } 1)} .
\end{aligned}
$$

C loin 1: $\Pi^{\perp} A M=D:$

$$
\Pi^{\perp} A \underbrace{\Pi \gamma}_{\text {in } V_{\lambda}}=\lambda \underbrace{\prod^{\perp} \Pi}_{\infty} v=0
$$

Clah 2: $\Pi A \Pi^{\perp}=(1$
For $w \in V_{\lambda}$ we hou

$$
A A^{+} \omega=A^{+} A w=\lambda A^{+} \omega
$$

Theregen
Then simile to coorn \perp we con row

$$
\begin{aligned}
& \pi^{\perp} \sqrt{+} \pi V=D . \\
& \Pi^{+} A^{+} \underbrace{\Pi v}_{i n V_{\lambda}}=\lambda \underbrace{\nabla^{\perp} \Pi v}_{\Phi}=0 . \\
& \Rightarrow T^{+} A^{+} \Pi=D \underset{\text { adplut }}{\Rightarrow} T A T^{\perp}=D .
\end{aligned}
$$

Thereger $A=M A M+T^{\perp} A T^{\perp}$.
Clain 3: $\Pi^{\perp} A \Pi^{\perp}$ is normal:
Fint dosere thot
(A) $\quad \square^{\perp} A=\Pi^{\perp} A\left(\Pi+\Pi^{\perp}\right)=\Pi^{\perp} A \Pi^{\perp}$
(B) $\Gamma^{\perp} A^{+}=\square^{\perp} A^{+}\left(\square+\square^{2}\right)=\Gamma^{\perp} A^{+} \Gamma^{\perp}$.

Then

$$
\left(\square^{\perp} A \square^{\perp}\right)\left(\square^{2} A^{+} \square^{\perp}\right)
$$

$$
\begin{aligned}
& =\left(\square^{\perp} A \square^{\perp}\right) A^{+} \square^{\perp} \\
& =\square^{\perp} A A^{+} \square^{\perp} \\
& =\square^{\perp} A^{+} A \square^{\perp} \\
& =\left(\square^{\perp} A^{+} \square^{\perp}\right) A \square^{\perp} \\
& (B) \\
& =\left(\square^{\perp} A \square^{\perp}\right)\left(\square^{\perp} A \square^{\perp}\right) .
\end{aligned}
$$

Let $u=\left\{T^{\perp} v: v \in V\right\}$.
Then $\Gamma^{\perp} A \Pi^{\perp} \in L(u)$
where

$$
\operatorname{din}(u)<\operatorname{din}(v
$$

By induction we have

$$
M^{\perp} A M^{\perp}=\sum_{a} \lambda_{a}\left|u_{a}\right\rangle\left\langle u_{a}\right|
$$

for some eathonernal bars $\left\{\left|u_{a}\right\rangle: a \in \Gamma\right\}$ of u.

Let $\left\{1 \omega_{b i}\right\}_{b \in A}$ be on aetronel bans fer V_{λ}.

Then

$$
A=\sum_{b \in \Lambda} \lambda\left|w_{b}\right\rangle\left\langle w_{b}\right\rangle+\sum_{a \in \Gamma} \lambda_{a}\left|u_{a}\right\rangle\left\langle u_{a}\right|
$$

Proot of polar decompozitien
The unitary A is ontruted os yolbus: By spertrol decompritien

$$
\sqrt{A^{+} A}=\sum_{a \in \lambda} \sqrt{\lambda_{a}}\left|V_{a}\right\rangle\left\langle V_{a}\right\rangle
$$

where $\sqrt{\lambda} a \in \mathbb{R}>0$

Let

$$
\left|u_{a}\right\rangle=\frac{1}{\sqrt{\lambda_{a}}} \text { A }\left|v_{a}\right\rangle
$$

where $a \in \Lambda^{\prime}=\left\{a \in \Lambda: \lambda_{a} \neq 0\right\}$.
The set $\{u a: a \in \wedge 1\}$ and cen be exterded to an eethonernel baii $\{u a: \quad a \in \lambda\}$.

Let

$$
u=\sum_{a \in \Sigma}\left|u_{a}\right\rangle\left\langle v_{a}\right| .
$$

(Omitted: Proving thot $A=U \sqrt{A^{+} A}$.)

For lineer afjelera bachgrourd see
Lineer Algebar Dare Right by Axler.

